

High Speed DC Electronic Load 6330 Series Programming Manual

> Version 1.4 March 2007 P/N A11 000204

Legal Notices

The information in this document is subject to change without notice.

Chroma ATE INC. makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Chroma ATE INC. shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

CHROMA ATE INC.

66 Hwa-Ya 1st Rd., Hwa-Ya Technical Park, Kuei-Shan Hsiang, Taoyuan Hsien, Taiwan

Copyright Notices. Copyright 2001-2007 Chroma ATE INC., all rights reserved. Reproduction, adaptation, or translation of this document without prior written permission is prohibited, except as allowed under the copyright laws.

Warranty

All Chroma instruments are warranted against defects in material and workmanship for a period of one year after date of shipment. Chroma agrees to repair or replace any assembly or component found to be defective, under normal use during this period. Chroma's obligation under this warranty is limited solely to repairing any such instrument, which in Chroma's sole opinion proves to be defective within the scope of the warranty when returned to the factory or to an authorized service center. Transportation to the factory or service center is to be prepaid by purchaser. Shipment should not be made without prior authorization by Chroma.

This warranty does not apply to any products repaired or altered by persons not authorized by Chroma, or not in accordance with instructions furnished by Chroma. If the instrument is defective as a result of misuse, improper repair, or abnormal conditions or operations, repairs will be billed at cost.

Chroma assumes no responsibility for its product being used in a hazardous or dangerous manner either alone or in conjunction with other equipment. High voltage used in some instruments may be dangerous if misused. Special disclaimers apply to these instruments. Chroma assumes no liability for secondary charges or consequential damages and in any event, Chroma's liability for breach of warranty under any contract or otherwise, shall not exceed the purchase price of the specific instrument shipped and against which a claim is made.

Any recommendations made by Chroma for use of its products are based upon tests believed to be reliable, but Chroma makes no warranty of the results to be obtained. This warranty is in lieu of all other warranties, expressed or implied, and no representative or person is authorized to represent or assume for Chroma any liability in connection with the sale of our products other than set forth herein.

CHROMA ATE INC.

66 Hwa-Ya 1st Rd., Hwa-Ya Technical Park, Kuei-Shan Hsiang, Taoyuan Hsien, Taiwan Tel: 886-3-327-9999 Fax: 886-3-327-2886 http://www.chromaate.com

Material Contents Declaration

A regulatory requirement of The People's Republic of China defined by specification SJ/T 11364-2006 mandates that manufacturers provide material contents declaration of electronic products, and for Chroma products are as below:

	Hazardous Substances									
Part Name	Lead	Mercury	Cadmium	Hexavalent Chromium	Polybrominated Biphenyls	Polybromodiphenyl Ethers				
	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE				
PCBA	×	0	0	0	О	0				
CHASSIS	×	0	0	0	0	0				
ACCESSORY	×	0	0	0	0	0				
PACKAGE	0	0	0	0	0	0				

"O" indicates that the level of the specified chemical substance is less than the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

"×" indicates that the level of the specified chemical substance exceeds the threshold level specified in the standards of SJ/T-11363-2006 and EU 2005/618/EC.

- 1. Chroma is not fully transitioned to lead-free solder assembly at this moment; however, most of the components used are RoHS compliant.
- 2. The environment-friendly usage period of the product is assumed under the operating environment specified in each product's specification.

Disposal

Do not dispose of electrical appliances as unsorted municipal waste, use separate collection facilities. Contact your local government for information regarding the collection systems available. If electrical appliances are disposed of in landfills or dumps, hazardous substances can leak into the groundwater and get into the food chain, damaging your health and well-being. When replacing old appliances with new one, the retailer is legally obligated to take back your old appliances for disposal at least for free of charge.

Revision History

The following lists the additions, deletions and modifications in this manual at each revision.

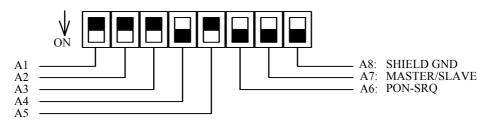
Date	Version	Revised Sections
May 2001	1.0	Complete this manual.
June 2003	1.1	Correct the errors in CONFigure:VOLTage:LATCh for "CONGIFURE
		Subsystem" under "Language Dictionary".
June 2005	1.2	Change the address and phone no. of Chroma ATE Inc.
Nov. 2006	1.3	Add the following:
		- "SYNCHRONOUS Subsystem" in "Specific Commands" section in
		the chapter of "Language Dictionary".
		- The description of "CONFigure: VOLTage: LATCh: RESet" in
		"CONGIFURE Subsystem" in the chapter of "Language Dictionary".
		Delete the duplicate "PROGram:RUN" command and the syntax listed
		in "Query Syntax" that is unable to query in "PROGRAM Subsystem"
		section in the chapter of "Language Dictionary".
Mar. 2007	1.4	Add "Material Contents Declaration".

Table of Contents

1. Ger	neral Information
1.1	Introduction
1.2	DIP Switches on the GPIB Card
1.2.	1 GPIB Address1-1
1.2.	2 Other DIP Switches
1.3	GPIB Capability of the Electronic Load
1.4	RS232C in Remote Control
2. Intr	roduction to Programming2-1
2.1	Basic Definition
2.2	Numerical Data Formats
2.3	Character Data Formats
2.4	Separators and Terminators
3. Lan	guage Dictionary
3.1	Common Commands
3.2	Specific Commands
3.2.	1 ABORT Subsystem
3.2.	
3.2.	3 SYNCHRONOUS Subsystem
3.2.	4 CONFIGURE Subsystem
3.2.	5 CURRENT Subsystem
3.2.	6 FETCH Subsystem
3.2.	7 LOAD Subsystem
3.2.	8 MEASURE Subsystem
3.2.	9 MODE Subsystem
3.2.	10 PROGRAM Subsystem
3.2.	11 RESISTANCE Subsystem
3.2.	12 RUN Subsystem
3.2.	13 SHOW Subsystem
3.2.	14 SPECIFICATION Subsystem
3.2.	
3.2.	16 VOLTAGE Subsystem
3.2.	17 System Commands
4. Stat	tus Reporting
4.1	Introduction
4.2	Register Information in Common
4.3	Channel Status
4.4	Channel Summary
4.5	Questionable Status
4.6	Output Queue
4.7	Standard Event Status
4.8	Status Byte Register
4.9	Service Request Enable Register
5. An	Example of Use

1. General Information

1.1 Introduction


This Programming Manual describes how to program the 6330 Series high speed load remotely from a GPIB controller or RS232C. The command set introduced here can be applied to all electronic loads of 6330 series, including 63301, 63302, 63303, etc. equipped with optional GPIB cards or standard RS232C equipment.

Either GPIB or RS232C can be used one at a time. They cannot be used simultaneously. If GPIB is used first in remote control, RS232C will be disabled unless the machine is reset, and vice versa.

1.2 DIP Switches on the GPIB Card

1.2.1 GPIB Address

Before programming the electronic load remotely via a GPIB computer, you need to know the GPIB address. Each device connected to the GPIB interface has a unique address assigned to it. Such address allows the system controller to communicate with individual devices. To set the GPIB address of an individual mainframe, Chroma 6332 or 6334, it is done by an 8-bit DIP switch on a GPIB card at the mainframe rear panel. The five bits, from A1 to A5, are GPIB address bits, which offer address space from 0 to 30. For details please refer to the following illustration and table.

Address	A5	A4	A3	A2	A1	Address	A5	A4	A3	A2	A1
0	0	0	0	0	0	16	1	0	0	0	0
1	0	0	0	0	1	17	1	0	0	0	1
2	0	0	0	1	0	18	1	0	0	1	0
3	0	0	0	1	1	19	1	0	0	1	1
4	0	0	1	0	0	20	1	0	1	0	0
5	0	0	1	0	1	21	1	0	1	0	1
6	0	0	1	1	0	22	1	0	1	1	0
7	0	0	1	1	1	23	1	0	1	1	1

9 0 1 0 0 1 25 1 1 0 0 1 10 0 1 0 1 0 26 1 1 0 1 0 11 0 1 0 1 1 27 1 1 0 1 1 12 0 1 1 0 0 28 1 1 1 0 0 13 0 1 1 0 1 29 1 1 1 0 1 14 0 1 1 1 0 30 1 1 1 0 15 0 1<	8	0	1	0	0	0	24	1	1	0	0	0
11 0 1 0 1 1 27 1 1 0 1 1 12 0 1 1 0 0 28 1 1 1 0 0 13 0 1 1 0 1 29 1 1 1 0 1 14 0 1 1 1 0 30 1 1 1 0	9	0	1	0	0	1	25	1	1	0	0	1
12 0 1 1 0 0 28 1 1 1 0 0 13 0 1 1 0 1 29 1 1 1 0 1 14 0 1 1 1 0 30 1 1 1 0	10	0	1	0	1	0	26	1	1	0	1	0
13 0 1 1 0 1 29 1 1 1 0 1 14 0 1 1 0 30 1 1 1 0 1	11	0	1	0	1	1	27	1	1	0	1	1
14 0 1 1 1 0 30 1 1 1 1 0	12	0	1	1	0	0	28	1	1	1	0	0
	13	0	1	1	0	1	29	1	1	1	0	1
	14	0	1	1	1	0	30	1	1	1	1	0
	15	0	1	1	1	1						

Table 1-1 GPIB address

1.2.2 Other DIP Switches

The remaining bits on the DIP switch, A6-A8, preset the electronic load mainframe 6332/ 6334 to the following functions:

Bit	Meaning	Preset	Description
A6	Frame LOAD	OFF	When ON is set, two frames can act as LOAD Key
	ON Link		ON/OFF through RS232C port.
A7		OFF	It must be "OFF".
A8	SHIELD GND	OFF	It is the selection to enable shield ground.

1.3 GPIB Capability of the Electronic Load

GPIB Capability	Response	Interface
		Functions
Talker/Listener	All electronic load functions except the setting for	AH1, SH1, T6, L4
	GPIB address are programmable via the GPIB.	
	The electronic load can send and receive messages	
	through the GPIB. Status information is sent using	
	a serial pull.	
Service Request	The electronic load will set the SRQ line true if	SR1
	there is an enabled service request condition.	
Remote/Local	In local mode, the electronic load is controlled by	RL1
	the front panel and also executes commands sent	
	to GPIB. The electronic load powers up in local	
	mode and remains there until it receives a	
	command from GPIB. Once the electronic load is	
	in remote mode, <i>REMOTE</i> will appear on the front	
	panel LCD. All front panel keys except LCL are	
	disabled, and the load <u>mod</u> ule display is in normal	
	metering mode. Press LCL key on the front panel	
	to return to local mode. Local can be disabled	
	using local lockout, so only the controller or the	

	power switch can return to local mode.	
Device Clear	The electronic load responds to the Device Clear	DCL, SDC
	(DCL) and Selected Device Clear (SDC) interface	
	commands. These two actions cause the electronic	
	load to clear the activity that may prevent it from	
	receiving and executing a new command. DCL	
	and SDC do not change any programmed settings.	

1.4 RS232C in Remote Control

When you use RS232C in remote control, you have to send the remote command <u>CONFigure:REMote ON</u> first in order to let control procedure enter into remote state, and then execute other command set. When control comes to an end, you have to send out the command <u>CONFigure:REMote OFF</u> so as to let control procedure return to local mode operation.

The RS232C control commands are same as those of GPIB. When the string comes to an end for RS232C command sending, <nl> must be added. Its ASCII code is 0A hexadecimal (or 10 decimal).

2. Introduction to Programming

2.1 Basic Definition

GPIB statement includes instrument control and query commands. A command statement sends an instruction to the electronic load, and a query command to request information from the electronic load.

Simple Command

A simple command statement consists of a command or keyword usually followed by a parameter or data:

LOAD ON

or TRIG

Compound Command

When two or more keywords are connected by colons (:), it creates a compound command statement. The last keyword usually is followed by a parameter or data:

CURRent : STATic : L1 3

or CONFigure : VOLTage : RANGe H

Query Command

or

A simple query command consists of a keyword followed by a question mark:

MEASure : VOLTage? MEASure : CURRent? CHAN?

Forms of Keywords

There are two forms for a keyword as described below.

Long-Form The word is spelled out completely to identify its function. For instance, CURRENT, VOLTAGE, and MEASURE are long-form keywords.Short-Form The word contains only the first three or four letters of the long-form. For instance, CURR, VOLT, and MEAS are short-form keywords.

In keyword definitions and diagrams, the short-form part of each keyword is emphasized in UPPER CASE letters to help you remember it. However, the electronic load will accept Volt, volt, voltage, VOLTAGE, volTAGE, etc. regardless of what form you have applied. However, if the keyword is incomplete, for example, "VOL" or "curre", it will not be recognized.

2.2 Numerical Data Formats

Chroma 6330 Electronic Load accepts the numerical data type listed in Table 2-1. Numeric data may be followed by a suffix to specify the dimension of the data. A suffix may be preceded by a multiplier. Chroma 6330 makes use of the suffixes listed in Table 2-2 and multipliers listed in Table 2-3.

Symbol	Description	Example
NR1	Digits without decimal point. The decimal point is	123, 0123
	assumed to be at the right of the least-significant digit.	
NR2	Digits with a decimal point.	123., 12.3, 0.123, .123
NR3	Digit with a decimal point and an exponent.	1.23E+3, 1.23E-3
NRf	Flexible decimal form that includes NR1 or NR2 or NR3.	123, 12.3, 1.23E+3
NRf+	Expanded decimal form that includes NRf and MIN,	123, 12.3, 1.23E+3,
	MAX. MIN and MAX are the minimum and maximum	MIN, MAX
	limit values for the parameter.	

Table 2-1Numerical Data Type

Mode	Class	Preferred Suffix	Secondary Suffix	Referenced Unit
CC	Current	А		Ampere
CR	Resistance	OHM		Ohm
CV	Amplitude	V		Volt
All	Time	S		Second
			MS	Millisecond
All	Slew Rate	A/µS		Amperes/micro Second

Table 2-2Suffix Elements

Multiplier	Mnemonic	Definition
1E6	MA	mega
1E3	K	kilo
1E-3	М	milli
1E-6	U	micro
1E-9	Ν	nano

Table 2-3 Suffix Multipliers

2.3 Character Data Formats

For command statements, the <NRf+> data format permits entry of required characters. For query statements, character strings may be returned in either of the forms shown in the following table. It depends on the length of the returned string.

Symbol	Character Form
crd	Character Response Data. They permit the return up to 12 characters.
aard	Arbitrary ASCII Response Data. They permit the return of undelimited
	7-bit ASCII. This data type is an implied message terminator (refer to
	Separators and Terminators).

2.4 Separators and Terminators

In addition to keywords and parameters, GPIB program statements require the following:

Data Separators:

Data must be separated from the previous command keyword by a space. This is shown in examples as a space (CURR 3) and on diagrams by the letters *SP* inside a circle.

Keyword Separators:

Keywords (or headers) are separated by a colon (:), a semicolon (;), or both. For example:

- LOAD:SHOR ON
- MEAS:CURR?;VOLT?
- CURR:STAT:L1 3;:VOLT:L1 5

Program Line Separators:

A terminator informs GPIB that it has reached the end of a statement. Normally, this is sent automatically by your GPIB programming statements.

The termination also occurs with other terminator codes, such as EOI. In this guide, the terminator is assumed at the end of each example line of code. If it needs to be indicated, it is shown by the symbol <nl>, which stands for "new line" and represents the ASCII code byte 0A hexadecimal (or 10 decimal).

Traversing the Command Tree:

The colon ":" separates keywords from each other which represents changes in branch level to the next lower one. For example:

CONF:VOLT:ON 5

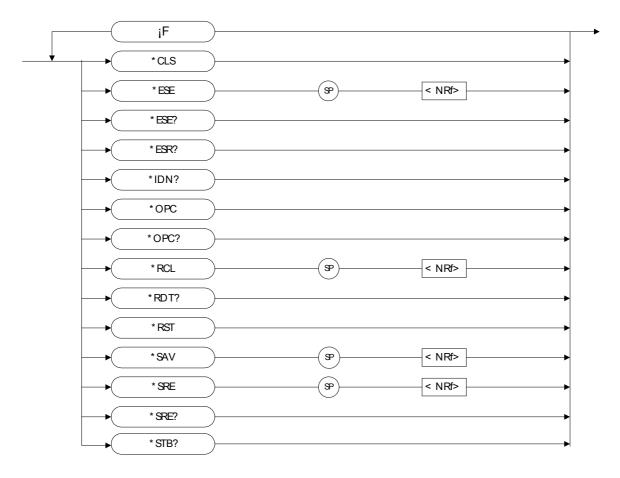
CONF is a root-level command, *VOLT* is the first branch, and *ON* is the second branch. Each ":" moves down command interpretation to the next branch.

■ The semicolon ";" allows you to combine command statements into one line. It returns the command interpretation to the previous colon.

For example: Combine the following two command statements: RES:RISE 100 <nl> and RES:L1 400 <nl> which can be formed into one command line as follows: RES:RISE 100;L1 400 <nl>

- To return to the root-level form you can
 - 1. Enter a new line character. This is symbolized as "<nl>" and can be linefeed "LF" or/and end of line "EOL". Or else,
 - 2. Enter a semicolon followed by a colon ";:".

Please refer to the following figure.


- 1. (root):VOLT:L1: 30<nl> Starting a New Line to return to the Root.
- 2. (root):SPEC:VOLT:H 30; :L 5;: (root):RES:L1 400; :RISE 1000;:

3. Language Dictionary

Commands for operating the 6330 Electronic Load remotely are grouped into subsystems. Each command that belongs to the same subsystem is arranged in alphabetic order. A syntax chart of the subsystem that contains the commands in the same group is included. Subsystems are ordered alphabetically according to their names in the following sections.

3.1 Common Commands

The common commands defined by IEEE488.2 standard are generic commands and queries. The first part of the language dictionary covers the commands. Each of them has a leading "*".

*CLS Clear Status Command

Type:	Device Status
Description:	The *CLS command executes the following actions:
-	1. Clear these registers
	<1> Channel Status Event registers for all channels
	<2> Channel Summary Event register
	<3> Questionable Status Event register
	<4> Standard Event Status Event register
	<5> Operation Status Event register
	2. Clear the Error Queue
	3. If "Clear Status Command" immediately follows a program
	message terminator (<nl>), the "Output Queue" and the MAV bit are also cleared.</nl>
Syntax:	*CLS
Parameters:	nil

*ESE Standard Event Status Enable Command/Query

Description:This command sets the condition of the Standard Event Status Enable register to determine which event (see *ESR?) is allowed to set the ESB (Event Summary Bit) for the Status Byte register. A "1" in the bit position enables the corresponding event. All of the events that enabled by Standard Event Status register are logically ORed to cause the Status Byte register ESB (bit 5) to be set. See descriptions of these three registers in Chapter 4 Status Reporting.Syntax:*ESE <nrf>Parameters:0 to 255Example:*ESE 48This command enables the CME and EXE events for the Standard Event Status register.Query Syntax:*ESE?Return Parameters:<nr1>Query Example:*ESE?This query returns the current setting for "Standard Event Status Enable".</nr1></nrf>	Туре:	Device Statu	IS
set the ESB (Event Summary Bit) for the Status Byte register. A "1" in the bit position enables the corresponding event. All of the events that enabled by Standard Event Status register are logically ORed to cause the Status Byte register ESB (bit 5) to be set. See descriptions of these three registers in Chapter 4 Status Reporting.Syntax:*ESE <nrf>Parameters:0 to 255Example:*ESE 48This command enables the CME and EXE events for the Standard Event Status register.Query Syntax:*ESE?Return Parameters:<nr1>Query Example:*ESE?This query returns the current setting for "Standard</nr1></nrf>	Description:	This comma	nd sets the condition of the Standard Event Status
 "1" in the bit position enables the corresponding event. All of the events that enabled by Standard Event Status register are logically ORed to cause the Status Byte register ESB (bit 5) to be set. See descriptions of these three registers in Chapter 4 <i>Status Reporting</i>. Syntax: *ESE <nrf></nrf> Parameters: 0 to 255 Example: *ESE 48 This command enables the CME and EXE events for the Standard Event Status register. Query Syntax: *ESE? Return Parameters: <nr1></nr1> Query Example: *ESE? This query returns the current setting for "Standard 		Enable regis	ter to determine which event (see *ESR?) is allowed to
 events that enabled by Standard Event Status register are logically ORed to cause the Status Byte register ESB (bit 5) to be set. See descriptions of these three registers in Chapter 4 <i>Status Reporting</i>. Syntax: *ESE <nrf></nrf> Parameters: 0 to 255 Example: *ESE 48 This command enables the CME and EXE events for the Standard Event Status register. Query Syntax: *ESE? Return Parameters: <nr1></nr1> Query Example: *ESE? This query returns the current setting for "Standard 		set the ESB	(Event Summary Bit) for the Status Byte register. A
ORed to cause the Status Byte register ESB (bit 5) to be set. See descriptions of these three registers in Chapter 4 Status Reporting.Syntax:*ESE <nrf>Parameters:0 to 255Example:*ESE 48This command enables the CME and EXE events for the Standard Event Status register.Query Syntax:*ESE?Return Parameters:<nr1>Query Example:*ESE?This query returns the current setting for "Standard</nr1></nrf>		"1" in the bit	t position enables the corresponding event. All of the
descriptions of these three registers in Chapter 4 Status Reporting.Syntax:*ESE <nrf>Parameters:0 to 255Example:*ESE 48This command enables the CME and EXE events for the Standard Event Status register.Query Syntax:*ESE?Return Parameters:<nr1>Query Example:*ESE?This query returns the current setting for "Standard</nr1></nrf>		events that e	enabled by Standard Event Status register are logically
Syntax: *ESE <nrf> Parameters: 0 to 255 Example: *ESE 48 This command enables the CME and EXE events for the Standard Event Status register. Query Syntax: *ESE? Return Parameters: <nr1> Query Example: *ESE? This query returns the current setting for "Standard</nr1></nrf>		ORed to cau	se the Status Byte register ESB (bit 5) to be set. See
Parameters:0 to 255Example:*ESE 48This command enables the CME and EXE events for the Standard Event Status register.Query Syntax:*ESE?Return Parameters: <nr1>Query Example:*ESE?This query returns the current setting for "Standard</nr1>		descriptions	of these three registers in Chapter 4 Status Reporting.
Example:*ESE 48This command enables the CME and EXE events for the Standard Event Status register.Query Syntax:*ESE?Return Parameters: <nr1>Query Example:*ESE?This query returns the current setting for "Standard</nr1>	Syntax:	*ESE <nrf< td=""><td>></td></nrf<>	>
the Standard Event Status register.Query Syntax:*ESE?Return Parameters: <nr1>Query Example:*ESE?This query returns the current setting for "Standard</nr1>	Parameters:	0 to 255	
Query Syntax:*ESE?Return Parameters: <nr1>Query Example:*ESE?This query returns the current setting for "Standard</nr1>	Example:	*ESE 48	This command enables the CME and EXE events for
Return Parameters: <nr1> Query Example: *ESE?This query returns the current setting for "Standard</nr1>			the Standard Event Status register.
Query Example:*ESE?This query returns the current setting for "Standard	Query Syntax:	*ESE?	
	Return Parameters	s: <nr1></nr1>	
Event Status Enable".	Query Example:	*ESE?	This query returns the current setting for "Standard
			Event Status Enable".

*ESR? Standard Event Status Register Query

Type:Device StatusDescription:This query reads the Standard Event Status register. Reading the
register clears it. See detailed explanation of this register in
Chapter 4 Status Reporting.

Standard Event Status Event Register									
Bit Position	7	6	5	4	3	2	1	0	
Condition	0	0	CME	EXE	DDE	QYE	0	0	
Bit Weight	128	64	32	16	8	4	2	1	

Standard Event Status Event Register

Query Syntax:*ESR?Return Parameters:<NR1>Query Example:*ESR?

Return the Standard Event Status register readings.

Return Example: 48

*IDN? Identification Query

Туре:	System Interfa	ace
Description:	This query req	juests the Electronic Frame (6334) to identify itself.
Query Syntax	*IDN?	
Return Parameters:	<aard></aard>	
Query Example:	*IDN?	
	String Info	rmation
	CHROMA	Manufacture
	6334	Model
	0	Always return zero
	01.00	Revision level of the primary interference firmware
	0	Customer's version
Return Example:	CHROMA 63	34,0,01.00,0

*OPC Operation Complete Command

Type:	Device Status
Description:	This command causes the interface to set the OPC bit (bit 0) of the
	Standard Event Status register when the Electronic Frame (6334) has
	completed all pending operations.
Syntax:	*OPC
Parameters:	nil

*OPC? Operation Complete Query

Туре:	Device Status
Description:	This query returns an ASCII "1" when all pending operations are
	completed.
Query Syntax:	*OPC?
Return Parameters	: <nr1></nr1>
Query Example:	1

*RCL Recall Instrument State Command

Type:	Device Status
Description:	This command restores the electronic load to a state that was
	previously stored in memory with the *SAV command to the
	specified location (see *SAV).
Syntax:	*RCL <nrf></nrf>
Parameters:	1 to 101
Example:	*RCL 50

*RDT? Resource Description Transfer Query

Type:	System Interface
Description:	This command returns the types of Electronic Frame (6334). If
	channel does not exist, it returns 0. If channel exists, it returns the
	types like 63303, 63302, 63307R, 63307L
Query Syntax:	*RDT?
Return Parameters:	<aard></aard>
Query Example:	63307L, 63307R, 63303, 0, 63302, 63302, 0, 0.

*RST Reset Command

Туре:	Device State
Description:	This command forces an ABORt, *CLS, LOAD=PROT=CLE
-	command.
Syntax:	*RST
Parameters:	nil

*SAV Save Command

Type:	Device Status
Description:	This command stores the present state of the single electronic load and all channel states of multiple loads in a specified memory location.
Syntax:	*SAV <nrf></nrf>
Parameters: Example:	1 to 100 *SAV 50

*SRE Service Request Enable Command/Query

Туре:	Device Status	
Description:	This comman	d sets the condition of the Service Request Enable
	register to det	ermine which event of the Status Byte register (see
	*STB) is allow	wed to set the MSS (Master Status Summary) bit. A
	"1" in the bit	position is logically ORed to cause the Status Byte
	register Bit 6	(the Master Summary Status Bit) to be set. See details
	regarding the	Status Byte register in Chapter 4 Status Reporting.
Syntax	*SRE <nrf></nrf>	
Parameters:	0 to 255	
Example:	*SRE 20	Enable the CSUM and MAV bit for Service Request.
Query Syntax:	*SRE?	
Return Parameters	: <nr1></nr1>	
Query Example:	*SRE?	Return current setting for "Service Request Enable".

*STB? Read Status Byte Query

Type:Device StatusDescription:This query reads the Status Byte register. Note that the MSS (Master
Summary Status) bit instead of RQS bit is returned in Bit 6. This
bit indicates if the electronic load has at least one reason for
requesting service. *STB? does not clear the Status Byte register,
which is cleared only when subsequent action has cleared all its set
bits. Refer to Chapter 4 Status Reporting for more information about
this register.

		ыши	s Dyle	Regisi	er			
Bit Position	7	6	5	4	3	2	1	0
Condition	0	MSS	ESB	MAV	QUES	CSUM	0	0
Bit Weight	128	64	32	16	8	4	2	1

Status Byte Register

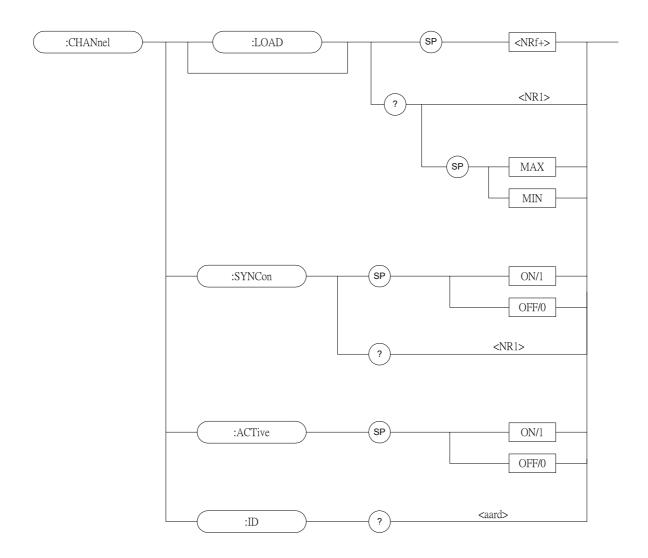
Query Syntax: *STB?

Return Parameters: <NR1>Query Example: *STB?Return Example: 20

Return the contents of "Status Byte".

3.2 Specific Commands

The 6330 series products are equipped with the following specific GPIB commands.


3.2.1 ABORT Subsystem

:ABORt >

ABORt

Type:	All Channel
Description:	Set all electronic loads as "OFF".
Syntax:	ABORt

3.2.2 CHANNEL Subsystem

CHANnel:[LOAD]

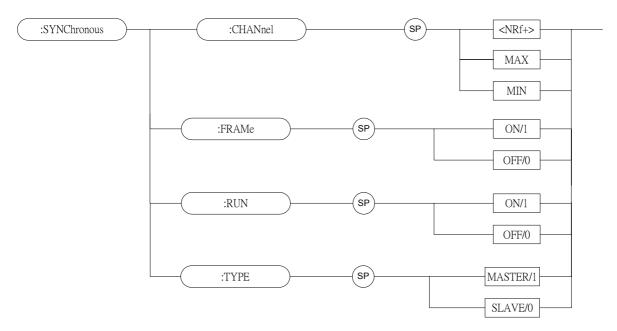
Туре:	Channel Specific		
Description:	Select a channel of which the coming channel-specific command		
	will be received and executed.		
Syntax:	CHANnel <nrf< td=""><td>f+></td></nrf<>	f+>	
Parameters:	1~8		
Example:	CHAN 1	Set the channel to "1".	
	CHAN MAX	Set the channel to "8".	
	CHAN MIN	Set the channel to "1".	
Query Syntax:	CHAN?		
	CHAN? MAX		
	CHAN? MIN		
Return Parameters	: <nr1></nr1>		
Query Example:	CHAN?	Return current specified channel.	
Return Example:	1	-	

CHANnel:ACTive

Type:	Channel Specific		
Description:	Enable or disable the load module.		
Syntax:	CHANnel: ACTive ON. Enable the load module. The front panel		
	displays the measurement of voltage and current. CHANnel: ACTive		
	OFF. Disable the load module. LCD on the front panel appears		
	OFF.		
Parameter:	ON/1, OFF/0		
Example:	CHAN: ACT ON		

CHANnel:SYNCon

Type:	Channel Specific		
Description:	Set the load module to receive synchronized command action to		
-	RUN ABORT or not.		
Syntax:	CHANnel: SYNCon ON		
	CHANnel: SYNCon OFF		
Parameters:	ON/1, OFF/0		
Example:	CHAN: SYNC ON. Set the load module to receive		
	synchronized command action.		
	CHAN: SYNC OFF. Set the load module not to receive		
	synchronized command action.		
Query Syntax:	CHAN: SYNC?		
Return Parameters:	: <nr1></nr1>		
Query Example:	CHAN: SYNC? Return to the load module and make it receive		
	synchronized command status.		
Return Example:	0 The load module does not receive synchronized		
	command status.		
	1 The load module receives synchronized command		
	status.		


CHAN:ID?

Channel-Specific
This query requests the module to identify itself.
ID?
<aard></aard>
ID?

String	Information
CHROMA	Manufacturer
6330X	Model
0	Always return zero
XX.XX	Revision of the primary interface firmware
0	Customer's Version

Return Example: CHROMA,63302,0,01.00,0

3.2.3 SYNCHRONOUS Subsystem

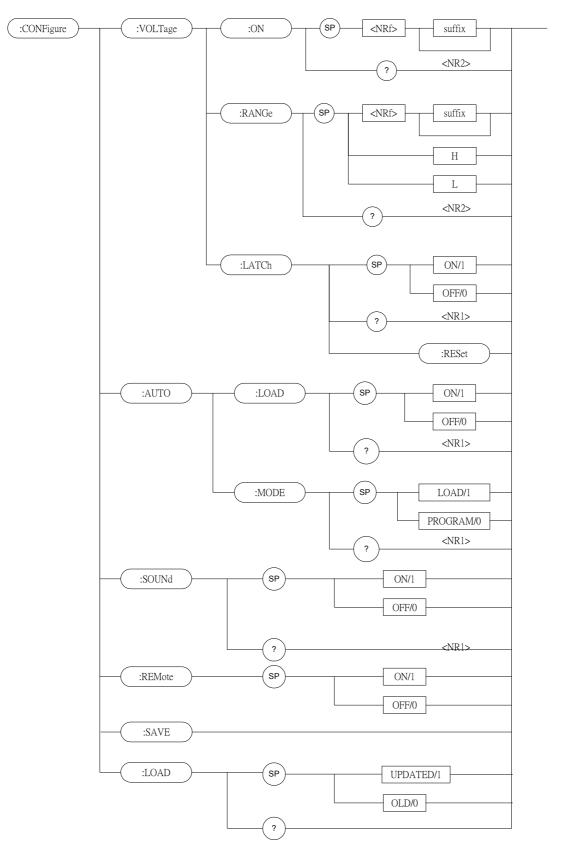
SYNChronous:CHANnel

Type:	All Channels		
Description:	Set the specified channel to T1 & T2 in sync dynamic mode f		
-	parallel loading.		
Syntax:	SYNChronous:CHAN	nel <nrf+></nrf+>	
Parameters:	$1 \sim 8$		
Example:	SYNC:CHAN 1	Set the specified channel to "1".	
	SYNC:CHAN MAX	Set the specified channel to "8".	
	SYNC:CHAN MIN	Set the specified channel to "1".	

SYNChronous:FRAMe

Type:	All Channels	
Description:	Set the mainframe if to sync. in parallel run. The 6330 series have a	
-	master/slave paralleling control	mode that allows synchronous load
	control in static and dynamic loa	ding mode.
Syntax:	SYNChronous: FRAMe ON.	Enable the mainframe to sync. in
		parallel run.
	SYNChronous: FRAMe OFF.	Disable the mainframe to sync. in
		parallel run.

Parameter:	ON/1, OFF/0
Example:	SYNC: FRAM ON


SYNChronous:RUN

Type:	All Channels	
Description:	Set all electronic loads to "ON" in sync. parallel run.	
Syntax:	SYNChronous: RUN ON	
	SYNChronous: RUN OFF	
Parameters:	ON/1, OFF/0	
Example:	SYNC: RUN ON Set the load to "ON" on sync. parallel.	
-	SYNC: RUN OFF Set the load to "OFF" on sync. parallel.	
	• •	

SYNChronous: TYPE

Type:	All Channels	
Description:	Set the specified mainframe to master or slave for sync. in parallel	
	run.	
Syntax:	SYNChronous: TYPE MAS	TER
	SYNChronous: TYPE SLAV	VЕ
Parameters:	MASTER /1, SLAVE /0	
Example:	SYNC: TYPE MASTERSet the mainframe to master for sync.	
		in parallel run.
	SYNC: TYPE SLAVE	Set the mainframe to slave for sync. in parallel run.
		1

3.2.4 CONFIGURE Subsystem

CONFigure:VOLTage:ON

Type:	Channel-Specific		
Description:	Set the voltage of sink current on.		
Syntax:	CONFigure: VOLTage: ON <nrf> [suffix]</nrf>		
Parameters:	For valid voltage range, refer	to the respective specification.	
Example:	CONF:VOLT: ON 1	Set Von=1V.	
	CONF:VOLT: ON 300mV	Set Von=300mV.	
Query Syntax:	CONFigure:VOLTage:ON?		
Return Parameters:	<nr2> [Unit=Voltage]</nr2>		
Query Example:	CONF: VOLT: ON?	Return the setting Von value.	
Return Example:	3.5		

CONFigure:VOLTage:RANGe

Туре:	Channel-Specific	
Description:	Set the voltage measurement range in CC mode.	
Syntax:	CONFigure:VOLTage:RANC	GEe <nrf> [suffix]</nrf>
Parameters:	Value ranges depend on Load Module. For details, refer to the specification.	
Example:	CONF:VOLT:RANG 16	Set full-range to Low, for example, in 63303.
	CONF:VOLT:RANG 80V	Set full-range to High, for example, in 63303.
	CONF:VOLT:RANG H	Set full-range to High.
	CONF:VOLT:RANG L	Set full-range to Low.
Query Syntax:	CONFigure:VOLTage:RANC	Ge?
Return Parameters:	<nr2> [Unit = Voltage]</nr2>	
Query Example: Return Example:	CONF:VOLT:RANG? 16	Return to Voltage range.

CONFigure:VOLTage:LATCh

Туре:	Channel-Specific	
Description:	Set the action type of Von.	
Syntax:	CONFigure:VOLTage:LAT	Ch ON
-	CONFigure:VOLTage:LAT	Ch OFF
Parameters:	ON/1, OFF/0	
Example:	CONF:VOLT:LATC ON	Set the action type of Von to
-		Latch.
	CONF:VOLT:LATC OFF	Set the action type of Von to Non
		Latch (For detailed action, refer to
		the operator's manual).
Query Syntax:	CONFigure:VOLTage:LAT	Ch?
Return Parameters	: <nr1></nr1>	
Query Example:	CONF:VOLT:LATC?	
Return Example:	0 (non latch), 1 (latch)	Return the action type of Von.

CONFigure:VOLTage:LATCh:RESet

Type:	Channel-Specific	
Description:	Reset the Von signal.	
Syntax:	CONFigure:VOLTage:LATC	Ch:RESet
Example:	CONF:VOLT:LATC:RES	Reset the Von signal.

CONFigure:AUTO:LOAD

Type:	All Channels	
Description:	Set if the load module to perf	Form Auto Load On during power-on.
Syntax	CONFigure: AUTO: LOAD O	N
	CONFigure:AUTO:LOAD O	FF
Parameters:	ON/1, OFF/0	
Example:	CONF:AUTO:LOAD ON	Start Auto Load On during power-on.
	CONF:AUTO:LOAD OFF	Close Auto Load On during
		power-on.
Query Syntax:	CONFigure:AUTO:LOAD?	
Return Parameters:	<nr1></nr1>	
Query Example:	CONF:AUTO:LOAD?	
Return Example:	0 or 1	Return the status of Auto Load On

CONFigure:AUTO:MODE

Туре:	All Channel		
Description:	Set type of Auto Load C	On as LOAD ON	or PROGRAM RUN.
Syntax:	CONFigure:AUTO:MO	DE LOAD	
	CONFigure:AUTO:MO	DE PROGRA	М
Parameters:	LOAD/1, PROGRAM/0)	
Example:	CONF:AUTO:MODE	LOAD	Set Auto Load On to
			general LOAD ON.
	CONF:AUTO:MODE	PROGRAM	Set Auto Load On to
			PROGRAM RUN.
Query Syntax:	CONFigure:AUTO:MO	DE?	
Return Parameters:	: <nr1></nr1>		
Query Example:	CONF:AUTO:MODE?	Retu	rn the execution
Return Example:	0 or 1	type	of Auto Load On.

CONFigure:SOUND

Type:	Channel-Specific	
Description:	Set the buffer sound of t	he load module to ON/OFF.
Syntax:	CONFigure: SOUND ON	V
	CONFigure:SOUND OF	F
Parameters:	ON/1, OFF/0	
Example:	CONF:SOUND ON	
	CONF:SOUND OFF	
Query Syntax:	CONFigure:SOUND?	
Return Parameters:	<nr1></nr1>	
Query Example:	CONF:SOUND?	Return the buzzer sound control status of
		the load module.
	A 1	

Return Example: 0 or 1

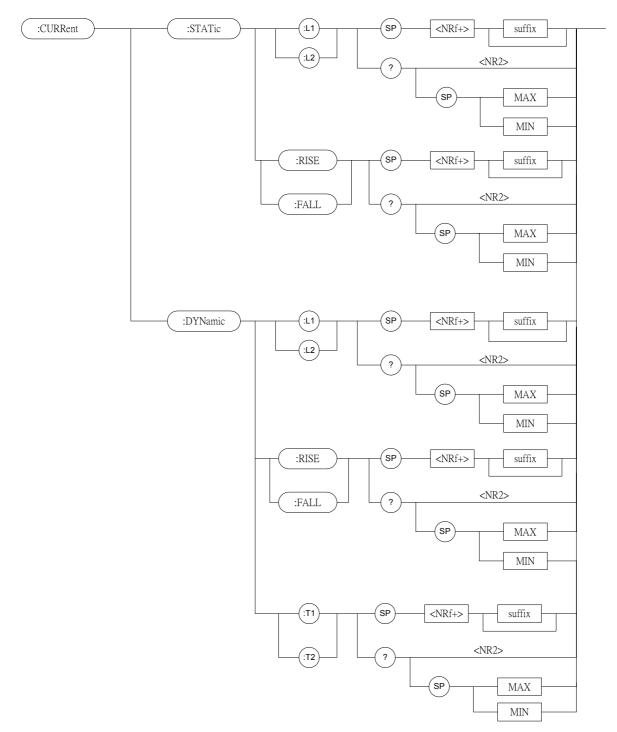
CONFigure:REMote

Type:	All Channel	
Description:	Set the status of remote control (only available in RS232C).	
Syntax:	CONFigure:REMote ON	
-	CONFigure:REMote OF	F
Parameters:	ON/1, OFF/0	
Example:	CONF:REM ON	Set to remote control.

CONFigure:SAVE

Type:	All Channels
Description:	Store the data of CONFigure into EEPROM.
Syntax:	CONFigure:SAVE
Parameters:	none
Example:	CONF:SAVE

CONFigure:LOAD


Type:	All Channels	
Description:	The value setting for load me	odule changed by the rotary knob
	(UPDATED/1) as LOADON	I, or the original set value (OLD/0).
Syntax:	CONFigure:LOAD UPDAT	ED
	CONFigure:LOAD OLD	
Parameters:	UPDATED/1, OLD/0	
Example:	CONF:LOAD UPDATED	Set the value of LOADON to be
		changed by the rotary knob.
	CONF:LOAD OLD	Set the value of LOADON to be

the

original set value.

Query Syntax:CONFigure:LOAD?Return Parameters:<NR1>Query Example:CONF:LOAD?Return Example:1 (UPDATED) or 0 (OLD)

3.2.5 CURRENT Subsystem

CURRent:STATic:L1/L2 C:L1/L2

L1/L2			
Type:	Channel-Specific		
Description:	Set Static Load Current for constant current mode.		
Syntax:	CURRent:STATic:L1 <	<nrf+>[suffix]</nrf+>	
	CURRent:STATic:L2 <	<nrf+>[suffix]</nrf+>	
Parameters:	Refer to respective specific	cation for valid value range.	
Example:	CURR:STAT:L1 20	Set Constant Current = $20A$ for	
		Static Load L1.	
	CURR:STAT:L2 10	Set Constant Current = 10A for	
		Static Load L2.	
	CURR:STAT:L1 MAX	Set Constant Current = maximum	
		value for Static Load L1.	
	CURR:STAT:L2 MIN	Set Constant Current = minimum	
		value for Static Load L2.	
Query Syntax:	CURRent:STATic:L1?		
	CURRent:STATic:L2?		
	CURRent:STATic:L1? MA	AX	
	CURRent:STATic:L2? MI	N	
Return Parameters:	<nr2> [Unit=Ampere]</nr2>		
Query Example:	CURR:STAT:L1?	Return the set current value to	
		Static Load L1.	

Return Example: 3.12

CURRent:STATic:RISE/FALL

C:RISE/FALL

Type:	Channel-Specific	
Description:	Set the current slew rate for constant current static mode.	
Syntax:	CURRent:STATic:RISE < NH	Xf+> [suffix]
	CURRent:STATic:FALL	<nrf+> [suffix]</nrf+>
Parameters:	Refer to respective specificat	ion for valid value range
Example:	CURR:STAT:RISE 2.5	Set rise slew rate as 2.5A/µS of static load.
	CURR:STAT:FALL 1A/µS	Set fall slew rate as $1A/\mu S$ of static load.
Query Syntax:	CURRent:STATic:RISE?	
	CURRent:STATic:FALL?	
	CURRent:STATic:RISE? M.	AX
	CURRent:STATic:FALL? M	IIN
Return Parameters	$: [Unit=A/\mu S]$	
Query Example:	CURR:STAT:RISE?	Return the rise slew rate of static load.
Return Example:	2.5	

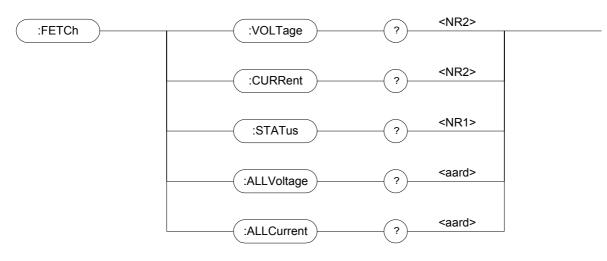
CURRent:DYNamic:L1/L2

Type:	Channel-Specific
Description:	Set the Dynamic Load Current during constant current mode.
Syntax:	CURRent:DYNamic:L1 <nrf+>[suffix]</nrf+>
	CURRent:DYNamic:L2 <nrf+>[suffix]</nrf+>

Parameters:	1 1	cification for valid value range.					
Example:	CURR:DYN:L1 20	Set the dynamic load parameter $L1 = 20A$.					
	CURR:DYN:L2 10	Set the dynamic load parameter $L2 = 10A$.					
	CURR:DYN:L1 MAX	5 1					
		L1 = maximum value.					
	CURR:DYN:L2 MIN	Set the dynamic load parameter					
		L2 = minimum value.					
Query Syntax:	CURRent:DYNamic:L1?						
	CURRent:DYNamic:L2?						
	CURRent:DYNamic:L1? MAX						
	CURRent:DYNamic:L2	2? MIN					
Return Parameters	: <nr2> [Unit=Amper</nr2>	e]					
Query Example:	CURR:DYN:L1?	Return the setting current in dynamic					
		load L1.					
Return Example:	35.6						

CURRent:DYNamic:RISE/FALL

Type:	Channel-Specific	
Description:	Set the current slew rate for o	constant current dynamic mode.
Syntax:	CURRent:DYNamic:RISE	<nrf+> [suffix]</nrf+>
	CURRent:DYNamic:FALL	<nrf+> [suffix]</nrf+>
Parameters:	Refer to respective specificat	tion for valid value range.
Example:	CURR:DYN:RISE 2.5	Set rise slew rate to $2.5 A/\mu S$.
	CURR:DYN:FALL 1A/µS	Set fall slew rate to $1A/\mu S$.
	CURR:DYN:RISE MAX	Set rise slew rate to the maximum
		value of dynamic load.
	CURR:DYN:FALL MIN	Set fall slew rate to the minimum
		value of dynamic load.
Query Syntax:	CURRent:DYNamic:RISE?	
	CURRent:DYNamic:FALL?	
	CURRent:DYNamic:RISE?	MAX
	CURRent:DYNamic:FALL?	MIN
Return Parameters	$: [Unit=A/\mu S]$	
Query Example:	CURR:DYN:RISE?	Return the rise slew rate of
		dynamic load.
D	25	


Return Example: 2.5

CURRent:DYNamic:T1/T2

Type:	Channel-Specific					
Description:	Set duration parameter T1 or T2 for dynamic load.					
Syntax:	CURRent:DYNamic:T1 <nrf+> [suffix]</nrf+>					
	CURRent:DYNamic:T2	<nrf+> [suffix]</nrf+>				
Parameters:	Refer to respective specifica	tion for valid value range.				
Example:	CURR:DYN:T1 10mS	Set the dynamic duration				
		T1 = 10mS.				
	CURR:DYN:T2 2S	Set the dynamic duration				

		T2 = 2S.
	CURR:DYN:T1 MAX	Set the dynamic duration
		T1 as maximum value.
	CURR:DYN:T2 MIN	Set the dynamic duration
		T2 as minimum value.
Query Syntax:	CURRent:DYNamic:T1?	
	CURRent:DYNamic:T2?	
	CURRent:DYNamic:T1? N	MAX
	CURRent:DYNamic:T2? N	AIN
Return Parameters:	: <nr2> [Unit=Sec]</nr2>	
Query Example:	CURR:DYN:T1?	Return the dynamic duration
		parameter T1.
Return Example:	0.15	

3.2.6 FETCH Subsystem

FETCh:VOLTage?

Channel-Specific
Return the voltage measured at electronic load input.
FETCh:VOLTage?
<nr2> [Unit=Voltage]</nr2>
FETC:VOLT?
8.12

FETCh:CURRent?

Туре:	Channel-Specific
Description:	Return the current measured at electronic load input.
Query Syntax:	FETCh:CURRent?
Return Parameters:	<nr2> [Unit=Ampere]</nr2>
Query Example:	FETC:CURR?
Return Example:	3.15

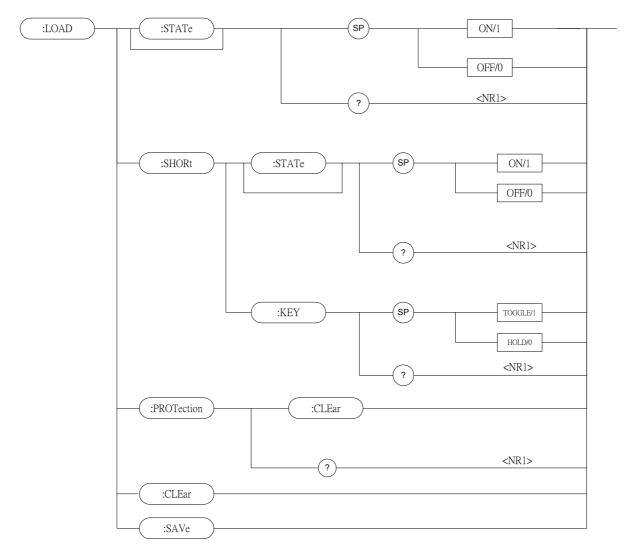
FETCh:STATus?

Type:	Channel-Specific
Description:	Return real time status of the load module.
Query Syntax:	FETCh:STATus?
Return Parameters:	<nr1></nr1>

FETCh:ALLVoltage?

Туре:	All Channel
Description:	Return the voltage measured at the input of the all load channels.
	The return value is 0 when the channel does not exist.
Query Syntax:	FETCh:ALLVoltage?
Return Parameters:	<aard> [Unit=Voltage]</aard>
Query Example:	FETC:ALLV?
Return Example:	1.2, 2, 0, 0, 10.2, 0, 0, 0

FETCh:ALLCurrent?


Туре:	Channel-Independent
Description:	Return the current measured at the input of the all load modules. The
	return value is 0 when the channel does not exist.
Query Syntax:	FETCh:ALLCurrent?
Return Parameters:	<aard> [Unit=Ampere]</aard>
Query Example:	FETC:ALLC?
Return Example:	0, 0, 0, 0, 5.12, 0, 12, 0

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Condition												OT	RV	OP	OV	OC
Bit Weight												16	8	4	2	1

Query Example:FETC:STAT?Return Example:4

Read back the present status of load module.

3.2.7 LOAD Subsystem

LOAD:[STATe]

Type:	Channel-Specifi	ic			
Description:	The LOAD command makes the electronic load active/on or				
Ĩ	inactive/off.				
Syntax:	LOAD:[STATe] ON			
-	LOAD:[STATe] OFF			
Parameters:	ON/1, OFF/0				
Example:	LOAD ON	Activate the electronic load.			
	LOAD OFF	Inactivate the electronic load.			
Query Syntax:	LOAD:[STATe]?			
Return Parameters	: <nr1></nr1>				
Query Example:	LOAD?	Return if the electronic load is active.			
Return Example:	1				

LOAD:SHORt:[STATe]

Type:	Channel-Specific	
Description:	Activate or inactivate sh	ort-circuited simulation.
Syntax:	LOAD:SHORt:[STATe]	
Example:	LOAD:SHOR ON	Activate short-circuited simulation.
	LOAD:SHOR OFF	Inactivates short-circuited simulation.
Parameters:	ON/1, OFF/0	
Query Syntax:	LOAD:SHORt:[STATe]	?
Return Parameters:	<nr1></nr1>	
Query Example:	LOAD:SHOR?	Return the short-circuit simulation state.
Return Example:	1	

LOAD:SHORt:KEY

Туре:	Channel-Specific	
Description:	Set the mode of short key in the e	lectronic load.
Syntax:	LOAD:SHORt:KEY TOGGLE	
Parameters:	TOGGLE/1, HOLD/0	
Example:	LOAD:SHOR:KEY TOGGLE	Set the short key mode to Toggle.
-	LOAD:SHOR:KEY HOLD	Set the short key mode to Hold.
Query Syntax:	LOAD:SHORt:KEY?	-
Return Parameters	: <nr1></nr1>	
Query Example:	LOAD:SHOR:KEY?	Return the mode of short key in
		the electronic load.

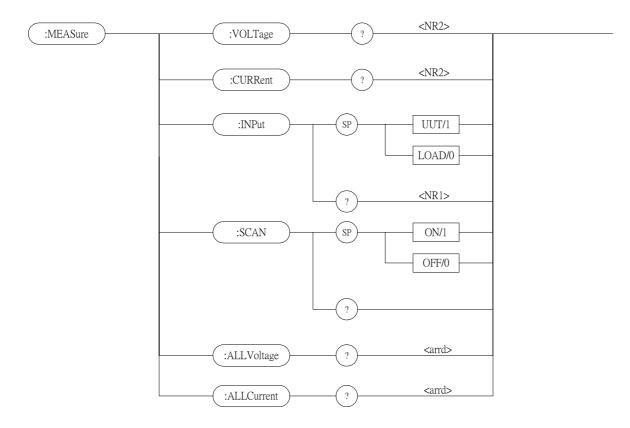
Return Example: 1

LOAD:PROTection:CLEar

Channel-Specific
This command resets or returns the status of electronic load.
LOAD:PROTection:CLEar
Refer to respective specification for valid value range.
LOAD:PROT:CLE
LOAD:PROTection:CLEar?
: <nr1></nr1>

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Condition	0	0	0	0	0	0	0	0	0	0	0	OT	RV	OP	OV	OC
Bit Weight												16	8	4	2	1

Query Example:LOAD:PROT?Return Example:0


Return the status of electronic load.

LOAD:CLEar

Туре:	All Channel
Description:	Clear all data and return it to default.
Syntax:	LOAD:CLEar
Parameters:	None
Example:	LOAD:CLE

LOAD:SAVe

Type:	All Channel
Description:	Save the current data as default.
Syntax:	LOAD:SAVe
Parameters:	None
Example:	LOAD:SAV

3.2.8 MEASURE Subsystem

MEASure:VOLTage?

0	
Type:	Channel-Specific
Description:	Return the real time voltage measured at load module input.
Query Syntax:	MEASure:VOLTage?
Return Parameters:	<nr2> [Unit=Voltage]</nr2>
Query Example:	MEAS:VOLT?
Return Example:	8.12
Return Example.	0.12

MEASure:CURRent?

Type:	Channel-Specific
Description:	Return the real time current measured at the load module input.
Query Syntax:	MEASure:CURRent?
Return Parameters:	<nr2> [Unit=Ampere]</nr2>
Query Example:	MEAS:CURR?
Return Example:	3.15

MEASure:INPut

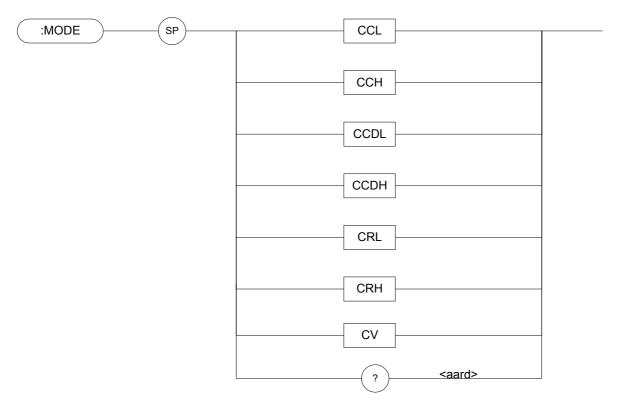
Type:	Channel-Specific	
Description:	Select the electronic load inp	out port to measure the voltage.
Syntax:	MEASure:INPut?	
Parameters:	UUT/1, LOAD/0	
Example:	MEAS:INP UUT	
	MEAS:INP LOAD	
Query Syntax:	MEASure:INPut?	Return the input port that has been set.

Return Parameters:<NR1>Query Example:MEAS:INP?Return Example:0

MEASure:SCAN

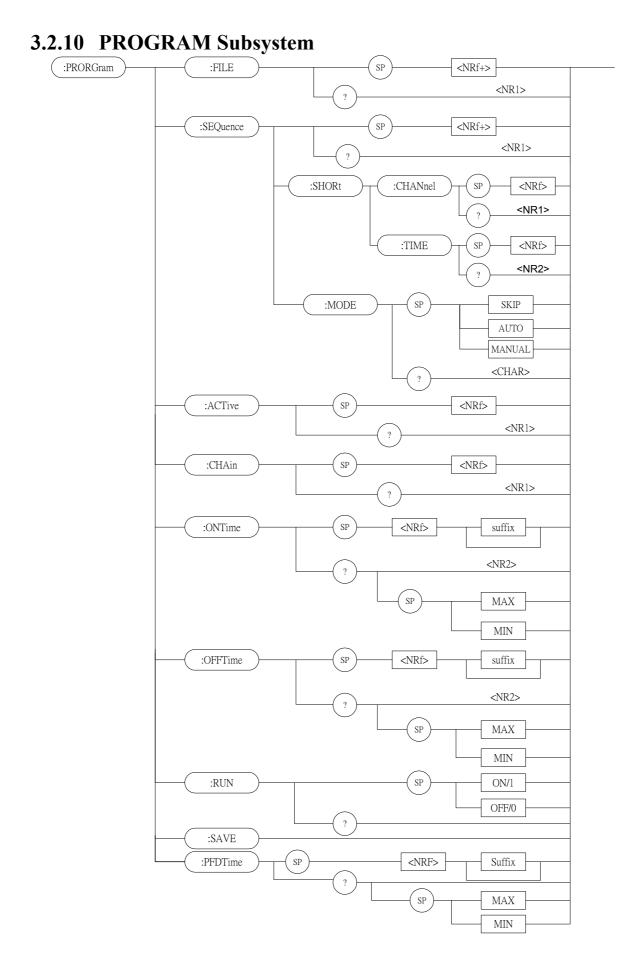
Туре:	All Channel	
Description:	Set the frame-scanning mode	to load module.
Syntax:	MEASure:SCAN ON	Enable the frame to scan the load module.
	MEASure:SCAN OFF	Disable the frame to scan the load module.
Parameters:	ON/1, OFF/0	
Example:	MEAS:SCAN ON	
-	MEAS:SCAN OFF	
Query Syntax:	MEASure:SCAN?	Return the scanning mode of the frame.
Return Parameters:	: <nr1></nr1>	
Query Example:	MEAS:SCAN?	

Return Example: 1


MEASure:ALLVoltage?

Туре:	All Channel
Description:	Returns real time voltage measured at the input of the all load
	channel. The return value is 0 when the channel is not existed.
Query Syntax:	MEASure:ALLVoltage?
Return Parameters:	<aard>[Unit=Voltage]</aard>
Query Example:	MEAS:ALLV?
Return Example:	1.2, 2, 0, 0, 10.2, 0, 0, 0

MEASure:ALLCurrent?


Type:	Channel-Independent
Description:	Return the real time current measured at the input of all load
	modules. The return value is 0 when the channel does not exist.
Query Syntax:	MEASure:ALLCurrent?
Return Parameters:	<aard> [Unit=Ampere]</aard>
Query Example:	MEAS:ALLC?
Return Example:	0, 0, 0, 0, 5.12, 0, 12, 0

MODE Subsystem 3.2.9

MODE

Type:	Channel-Specific	ational made for the electronic land
Description:	1	ational mode for the electronic load.
Syntax:	MODE CCL	Set CC mode of low range.
	MODE CCH	Set CC mode of high range.
	MODE CCDL	Set CC dynamic mode of low range.
	MODE CCDH	Set CC dynamic mode of high range.
	MODE CRL	Set CR mode of low range.
	MODE CRH	Set CR mode of high range.
	MODE CV	Set CV mode.
Parameters:	CCL, CCH, CCDL, CCDH,	CRL, CRH, CV
Example:	MODE CCL	
Query Syntax:	MODE?	Return the operational mode of the
		electronic load.
Return Parameters	s: <aard></aard>	
Query Example:	MODE?	
Return Example:	CCL	

PROGram:FILE

Type:	By program file
Description:	Set the program number.
Syntax:	PROGram:FILE <nrf+></nrf+>
Parameters:	1 to 10
Example:	PROG:FILE 10
Query Syntax:	PROGram:FILE?
Return Parameters:	<nr1></nr1>
Query Example:	PROG:FILE?
Return Example:	10

Return the active program number.

PROGram:SEQuence

Type:	By program file
Description:	Set the sequence for program file.
Syntax:	PROGram:SEQuence <nrf+></nrf+>
Parameters:	1 to 10
Example:	PROG:SEQ3
Query Syntax:	PROGram:SEQuence?
Return Parameters:	<nr1></nr1>
Query Example:	PROG:SEQ?
Return Example:	3

PROGram:SEQuence:MODE

Туре:	By program file
Description:	Set the type of sequence.
Syntax:	PROGram:SEQuence:MODE SKIP
	PROGram:SEQuence:MODE AUTO
	PROGram:SEQuence:MODE MANUAL
Parameters:	SKIP, AUTO, MANUAL
Example:	PROG:SEQ:MODE SKIP
	PROG:SEQ:MODE AUTO
	PROG:SEQ:MODE MANUAL
Query Syntax:	PROGram:SEQ:MODE?
Return Parameters:	SKIP, AUTO, MANUAL
Query Example:	PROG:SEQ:MODE?
Return Example:	AUTO

PROGram:SEQuence:SHORt:CHANnel

Туре:	By program file
Description:	Set the short channel for PROGRAM file SEQuence
Syntax:	PROGram:SEQuence:SHORt:CHANnel <nrf></nrf>
Parameters:	0 – 255

Channel	8	7	6	5	4	3	2	1
Bit Weight	128	64	32	16	8	4	2	1

Example:	PROG:SEQ:SHOR:CHAN 3
Query Syntax:	PROGram:SEQuence:SHORt:CHANnel?

Return Parameter:<NR1>Query Example:PROG:SEQ:SHOR:CHAN?Return Example:3

PROGram:SEQuence:SHORt:TIME

Туре:	By program file
Description:	Set the short time for PROGRAM file SEQuence.
Syntax:	PROGram:SEQuence:SHORt:TIME
Parameters:	0 - 30.0
Example:	PROG:SEQ:SHOR: TIME 10
Query Syntax:	PROGram:SEQuence:SHORt:TIME?
Return Parameter:	<nr2></nr2>
Query Example:	PROG:SEQ:SHOR:TIME?
Return Example:	10

PROGram:ACTive

By program file
Select the active load modules.
PROGram:ACTive <nrf></nrf>
0-255

Channel	8	7	6	5	4	3	2	1
Bit Weight	128	64	32	16	8	4	2	1

Example:	PROG:ACT 12
Query Syntax:	PROGram:ACTive?
Return Parameters:	<nr1></nr1>
Query Example:	PROG:ACT?
Return Example:	12

PROGram:CHAin

Туре:	By program file	
Description:	Set the type of prog	gram file in serial execution.
Syntax:	PROGram:CHAin	<nrf></nrf>
Parameters:	0 to 10	0 does not chain.
Example:	PROG:CHA 7	
Query Syntax:	PROGram: CHAin?)
Return Parameters:	<nr1></nr1>	
Query Example:	PROG:CHA?	
Return Example:	7	

PROGram:ONTime

Type:	By program file
Description:	Set the load on time for program file.
Syntax:	PROGram:ONTime <nrf></nrf>
Parameters:	Refer to respective specification for valid value range.
Example:	PROG:ONT 10
-	PROG:ONT 100mS

Query Syntax:PROGram:ONTime?Return Parameters:<NR2> [Unit=Sec]Query Example:PROG:ONT?Return Example:10

PROGram:OFFTime

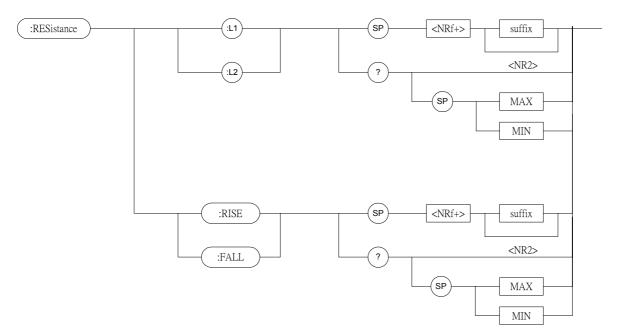
Туре:	By program file
Description:	Set the load off time for program file.
Syntax:	PROGram:OFFTime <nrf></nrf>
Parameters:	Refer to respective specification for valid value range.
Example:	PROG:OFFT 20
	PROG:OFFT 200mS
Query Syntax:	PROGram:OFFTime?
Return Parameters:	<nr2> [Unit=Sec]</nr2>
Query Example:	PROG:OFFT?
Return Example:	0.2

PROGram:PFDTime

Туре:	By program file
Description:	Set the pass/fail delay time of program file.
Syntax:	PROGram:PFDTime <nrf></nrf>
Parameters:	For valid value range refer to respective specification.
Example:	PROG:PFDT 1
PROG:	PFDT 200mS
Query Syntax:	PROGram:PFDTime?
Return Parameters:	<nr2> [Unit=Sec]</nr2>
Query Example:	PROG:PFDT?
Return Example:	0.2

PROGram:SAVE

Type:	By program file
Description:	Save the program settings.
Syntax:	PROGram:SAVE
Parameters:	NONE
Example:	PROG:SAVE


PROGram:RUN

Туре:	By program file
Description:	Execute the program.
Syntax:	PROGram: RUN ON
	PROGram: RUN OFF
Parameters:	ON/1, OFF/0
Example:	PROG:RUN ON
Query Syntax:	PROGram:RUN?
Return Parameter:	<nr1></nr1>
Query Example:	PROGram:RUN?
Return Example:	1

PROGram:KEY

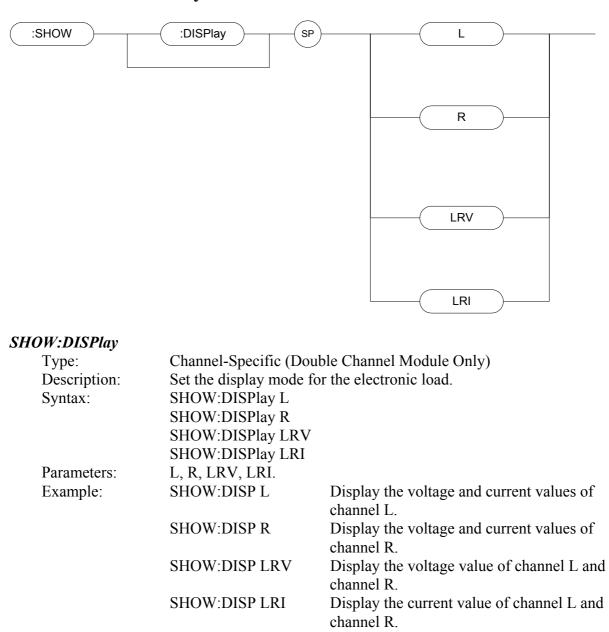
Type:	By program file
Description:	Echo the manual key code
Syntax:	PROGram:KEY <nr1></nr1>
	PROGram:RUN OFF
Parameters:	0 - 9 - K0 - K9
	10 -> Kup
	11 -> Kdown
Example:	PROG:KEY 11

3.2.11 **RESISTANCE** Subsystem

RESistance:L1/L2

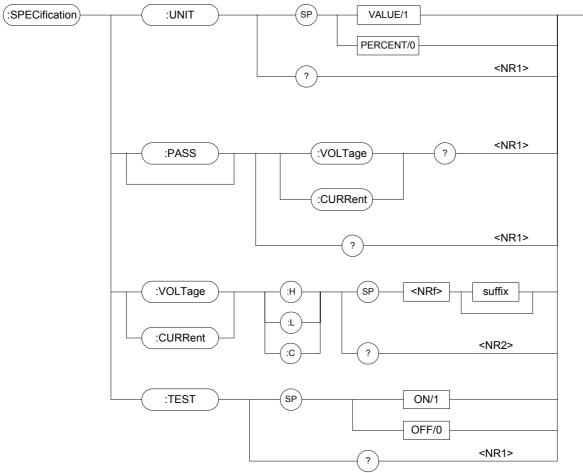
Type:	Channel-Specific		
Description:	Set static resistance level for constant resistance mode.		
Syntax:	RESistance:L1 <nrf+> [suffix]</nrf+>		
	RESistance:L2 <nrf+> [suffix]</nrf+>		
Parameters:	Refer to respective specification for valid value range.		
Example:	RES:L1 20 OHM Set constant resistance = 20 ohm		
		for Load L1.	
	RES:L2 10 OHM	Set constant resistance = 10 ohm	
		for Load L2.	
	RES:L1 MAX	Set constant resistance = maximum	
		L1 value for Load L1.	
	RES:L2 MIN	Set constant resistance = minimum	
		L2 value for Load L2.	
Query Syntax:	RESistance:L1?		
	RESistance:L2?		
	RESistance:L1? MAX		
	RESistance:L2? MIN		
Return Parameters	: <nr2> [Unit=OHM]</nr2>		
Query Example:	RES:L1?	Return the set resistance value of Load L1.	
Return Example:	10		
		Return the set resistance value of Load L1.	

RESistance:RISE/FALL


Type:	Channel-Specific	
Description:	Set the resistive slew rate for constant resistance.	
Syntax:	RESistance:RISE <nrf+> [suffix]</nrf+>	
	RESistance:FALL <nrf+> [suffix]</nrf+>	
Parameters:	Refer to respective specification for valid value range.	

Example:	RES:RISE 2.5 RES:FALL 1A/µS	Set CR rise slew rate to $2.5 \text{A}/\mu\text{S}$. Set CR fall slew rate to $1 \text{A}/\mu\text{S}$.	
	RES:RISE MAX	Set CR rise slew rate to the	
		maximum programmable value.	
	RES:FALL MIN	Set CR fall slew rate to the	
		minimum programmable value.	
Query Syntax:	RESistance:RISE?		
	RESistance:FALL?		
	RESistance:RISE? MAX		
	ESistance:FALL? MIN		
Return Parameters:	<pre>: <nr2> [Unit=OHM]</nr2></pre>		
Query Example:	RES:RISE?	Return the CR rise slew rate.	
Return Example:	2.5		

3.2.12 RUN Subsystem


:RUN

Type:	All Channels
Description:	Set all electronic loads to "ON".
Syntax:	RUN

3.2.13 SHOW Subsystem

3.2.14 SPECIFICATION Subsystem

SPECification:UNIT

Type:	All Channels
Description:	Set the specific entry mode.
Syntax:	SPECification:UNIT VALUE
	SPECification:UNIT PERCENT
Parameters:	VALUE/1, PERCENT/0
Example:	SPEC:UNIT VALUE
	SPEC: UNIT PERCENT
Query Syntax:	SPECification:UNIT?
Query Example:	SPEC:UNIT?
Return Parameters:	<nr1></nr1>
Return Example:	0

SPECification:VOLTage?

Type:	Channel-Specific	
Description:	Request GO-NG result reference to voltage specification.	
Query Syntax:	SPECification:VOLTage?	
Query Example:	SPEC:VOLT?	Return voltage GO-NG result for CC and
		CR modes.
Return Parameters:	<nr1></nr1>	
Return Example:	0 (NG), 1 (GO)	

SPECification:CURRent?

Type:	Channel-Specific			
Description:	Request GO-NG result reference to current specification.			
Query Syntax:	SPECification:CUF	Rent?		
Query Example:	SPEC:CURR?	Return the current GO-NG result for CC		
		mode.		
Return Parameters:	<nr1></nr1>			
Return Example:	0 (NG), 1 (GO)			

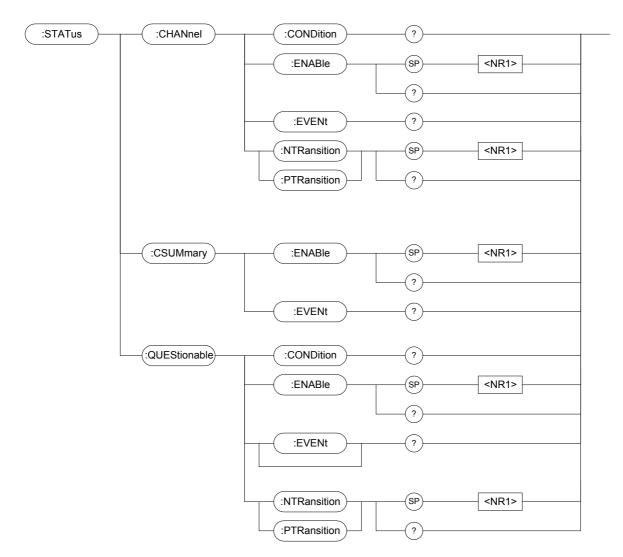
SPECification?

Type:	All Channels	
Description:	Request GO-NG result r	eference to all channels specifications.
Query Syntax:	SPECification?	
Query Example:	SPEC?	Return all channels GO-NG results.
Return Parameters:	<nr1></nr1>	
Return Example:	0 (NG), 1 (GO)	

SPECification:VOLTage

)-
Type:	Channel-Specific
Description:	Set the voltage specification.
Syntax:	SPECification:VOLTage:H
	SPECification:VOLTage:L
	SPECification:VOLTage:C
Parameters:	Refer to respective specification for valid value range.
Example:	SPEC:VOLT:H <nrf+> [suffix]</nrf+>
	SPEC:VOLT:L <nrf+> [suffix]</nrf+>
	SPEC:VOLT:C <nrf+> [suffix]</nrf+>
Query Syntax:	SPECification:VOLTage:H?
	SPECification:VOLTage:L?
	SPECification:VOLTage:C?
Query Example:	SPEC:VOLT:H?
Return Parameters:	<nr2> [Unit=Voltage]</nr2>
Return Example:	4.75

SPECification:CURRent


- J · · · · · · · · · ·	
Туре:	Channel-Specific
Description:	Sets the current specification.
Syntax:	SPECification:CURRent:H
	SPECification:CURRent:L
	SPECification:CURRent:C
Parameters:	Refer to respective specification for valid value range.
Example:	SPEC:CURR:H <nrf+> [suffix]</nrf+>
	SPEC:CURR:L <nrf+> [suffix]</nrf+>
	SPEC:CURR:C <nrf+> [suffix]</nrf+>
Query Syntax:	SPECification:CURR:H?
	SPECification:CURR:L?
	SPECification:CURR:C?
Query Example:	SPEC:CURR:H?

Return Parameters: <NR2> [Unit=Current] Return Example: 4.75

SPECification: TEST

Type:	Channel-Specific
Description:	Start or close the specification test.
Syntax:	SPECification: TEST ON
5	SPECification: TEST OFF
Parameters:	ON/1, OFF/0
Example:	SPEC:TEST ON
-	SPEC: TEST OFF
Query Syntax:	SPECification:TEST?
Query Example:	SPEC:TEST?
Return Parameters:	<nr1></nr1>
Return Example:	1

3.2.15 STATUS Subsystem

STATus:CHANnel:CONDition

Type:	Channel-Specific
Description:	Return the real time channel status.
Query Syntax:	STATus:CHANnel:CONDition?
Return Parameters:	<nr1></nr1>

Dit Coufing with an	- f	Channel Chatter Designation
Dir Configuration	ΟJ	Channel Status Register

Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Condition	0	0	0	0	0	0	0	0	0	0	0	OT	RV	OP	OV	OC
Bit Weight												16	8	4	2	1

Query Example:STAT:CHAN:COND?Return Example:2048

Return the status of the electronic load.

STATus:CHANnel:ENABle

Type:	Channel-Specific			
Description:	Mask to select which bit in the Event register is allowed to be			
	summed into the correspondi	ng channel bit for the Channel		
	Summary Event register.			
Syntax:	STATus:CHANnel:ENABle			
Parameters:	0~65535			
Example:	STAT:CHAN:ENABl 24			
Query Syntax:	STATus:CHANnel:ENABle			
Return Parameters:	<nr1></nr1>			
Query Example:	STAT:CHAN:ENABL?	Return the contents of the Status Channel Enable register.		

Return Example: 24

STATus:CHANnel:EVENt?

Type:	Channel-Specific			
Description:	Record all channel events that have occurred since last time the			
	register was read, and reset th	ne Channel Event register.		
Query Syntax:	STATus:CHANnel:EVENt?			
Return Parameters:	<nr1></nr1>			
Query Example:	STAT:CHAN:EVEN?	Read and reset the Channel Event		
		register.		

Return Example: 24

STATus: CHANnel: PTRansition/NTRansition

Type:	Channel-Specific				
Description:	Programmable filters that determine what type of transition				
	(0-to-1 or 1-to-0) in the Cond	lition register will set the			
	corresponding bit of the Ever	nt register.			
Syntax:	STATus:CHANnel:PTRansit	ion/NTRansition <nrf></nrf>			
Parameters:	0~65535				
Example:	STAT:CHAN:PTR 4	Set OP(over power bit 2) from 0-to-1.			
	STAT:CHAN:NTR 4	Set OP(over power bit 2) from 1-to-0.			
Query Syntax:	STATus:CHANnel:PTRansit	ion?			
	STATus:CHANnel:NTRansition?				
Return Parameters:	<nr1></nr1>				
Query Example:	STAT:CHAN:PTR?	Inquiry setting for Channel			
		PTRansition.			

Return Example: 4

STATus:CSUMmary:ENABle

Туре:	Channel-Specific
Description:	Mask to select which bit in the Channel Event register is allowed to
	be summed into the CSUM (Channel Summary) bit for the Status
	Byte register.
Syntax:	STATus:CSUMmary:ENABle
Parameters:	
	Bit Configuration of Channel Summary Register

Bit Position	7	6	5	4	3	2	1	0
Channel	8	7	6	5	4	3	2	1
Bit Weight	128	64	32	16	8	4	2	1

Example: STAT:CSUM:ENAB 3 Query Syntax: STATus:CSUMmary:ENABle? Return Parameters: <NR1> Query Example: STAT:CSUM:ENAB?

Return the setting of Channel Summary Enable register.

Return Example: 3

STATus:CSUMmary:EVENt

Type:

Channel-Specific

Description: Indicate all channels of which an enabled STAT:CHAN Event has occurred since last time the register was read. Syntax: STATus:CSUMmary:EVENt

Parameters:

Bit Configuration of Channel Summary Register

Bit Position	7	6	5	4	3	2	1	0
Channel	8	7	6	5	4	3	2	1
Bit Weight	128	64	32	16	8	4	2	1

Example:	STAT:CSUM:EVEN 3	
Query Syntax:	STATus:CSUMmary:EVEN	t?
Return Parameters:	<nr1></nr1>	
Query Example:	STAT:CSUM:EVEN?	R

Return the value of the Channel Summary Event register.

Return Example: 3

STATus:QUEStionable:CONDition

Type:	Channel-Specific	
Description:	Real-time ("live") recording of	of Questionable data
Query Syntax:	STATus:QUEStionable:CON	Dition?
Return Parameters:	<nr1></nr1>	
Query Example:	STAT:QUES:COND?	Return the channel status.
Return Example:	6	

STATus:QUEStionable:ENABle

Type:	Channel-Specific
Description:	Mask to select which bit on the Event register is allowed to be
	summed into the QUES bit for the Status Byte register.
Syntax:	STATus:QUEStionable:ENABle

Parameters:

		Bit	Con	figu	ratic	on of	Que	estic	nab	le S	tatus	s Reg	ister	,		
Bit Position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Condition	0	0	0	0	0	0	0	0	0	0	0	ΤE	RV	PE	VE	CE
Bit Weight												16	8	4	2	1

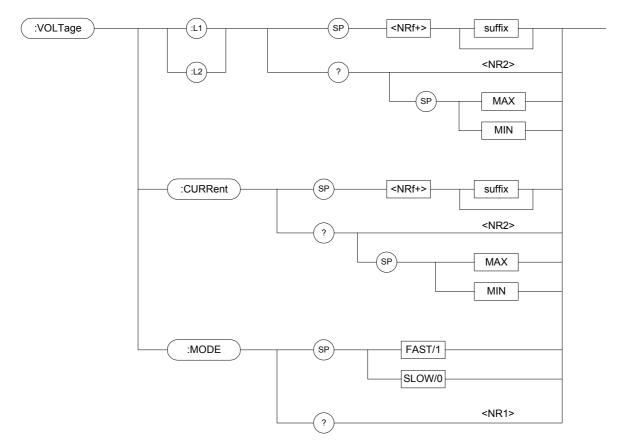
co 11 0

Example: STAT: QUES: ENAB 24 Query Syntax:STATus:QUEStionable:ENABle?Return Parameters:<NR1>Query Example:STAT:QUES:ENABReturnReturn

Return the setting of the Status Questionable Enable register.

Return Example: 24

STATus:QUEStionable:EVENt?


Type:	Channel-Specific	
Description:	Record all Questionable cond	litions that have occurred since last time
	the register was read.	
Query Syntax:	STATus:QUEStionable:EVE	Nt?
Return Parameters:	<nr1></nr1>	
Query Example:	STAT:QUES:EVEN?	Return the contents of the
		Questionable Event register.
Return Example:	24	

-

STATus:QUEStionable:PTRansition/NTRansition

Type:	Channel-Specific							
Description:	Programmable filters determine what type of transition (0-to-1 or							
-	1-to-0) in the Condition regis	ter will set the corresponding bit of the						
	Event register.							
Syntax:	STATus:QUEStionable:PTRansition/NTRansition <nrf></nrf>							
Parameters:	0~65535							
Example:	STAT:QUES:PTR 4	Set OP(over power bit 2) as 0-to-1.						
	STAT:QUES:NTR 4	Set OP(over power bit 2) as 1-to-0.						
Query Syntax:	STATus:QUEStionable:PTRa	ansition?						
	STATus:QUEStionable:NTR	ansition?						
Return Parameters:	<nr1></nr1>							
Query Example:	STAT:QUES:PTR?	Return the setting on the QUEStionable Ptransition/ Ntransition.						
	_							

Return Example: 4

3.2.16 VOLTAGE Subsystem

VOLTage:L1/L2

Type:	Channel-Specific	
Description:	Set the static load volta	ge in constant voltage mode.
Syntax:	VOLTage:L1	
	VOLTage:L2	
Parameters:	Refer to respective spec	cification for valid value range.
Example:	VOLT:L1 8V	Set voltage of load L1 as 8V.
	VOLT:L2 24V	Set voltage of load L2 as 24V.
	VOLT:L1 MAX	Set voltage of load L1 as the
		maximum value.
	VOLT:L2 MI	N Set voltage of load L2 as the
		minimum value.
Query Syntax:	VOLTage:L1?	
	VOLTage:L2?	
	VOLTage:L1? MAX	
	VOLT:L2? MIN	
Return Parameters	: <nr2> [Unit=Voltag</nr2>	e]
Query Example:	VOLT:L1?	Return the set voltage value of
		load L1.
Return Example:	0	

VOLTage:CURRent

Type:	Channel-	Specific				
Description:	Set the current limit for constant voltage mode.					
Syntax:	VOLTag	e:CURRent	-			
Parameters:	Refer to 1	respective spec	ification for valid value range.			
Example:	VOLT:C		Set the loading current limit to 3A			
-			in constant voltage mode.			
	VOLT:C	URR MAX	Set the loading current limit to the			
			maximum value in constant			
			voltage mode.			
	VOLT:C	URR MIN	Set the loading current limit to the			
			minimum value in constant			
			voltage mode.			
Query Syntax:	VOLTag	e:CURRent?				
Return Parameters:	<nr2></nr2>	[Unit=Amper	e]			

Return Parameters: <NR2> [Unit=Ampere]Query Example:VOLT:CURR?Return Example:3

VOLTage:MODE

Channel-Specific
Set the response speed in CV mode.
/OLTage:MODE FAST
VOLTage:MODE SLOW
FAST/1, SLOW/0
/OLT: MODE FAST
VOLT:MODE SLOW
VOLTage:MODE?
<nr1></nr1>
VOLT:MODE?

3.2.17 System Commands

M

Туре	: All Channels
Description	: Set the load mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: M "n,n,n,n,n,n,n,"
Parameters(n)	: 0: do not change, 1: CCL, 2: CCH, 3: CCDL, 4: CCDH, 5: CRL, 6: CRH, 7: CV
Example	: M "1,1,2,2,2,2,5,5" M "2,2,2,2,2,2,0"

AC

Type Description	 : All Channels : Set the current level 1(L1) of CC mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: AC "n,n,n,n,n,n,n,n"
Parameters(n)	: <nr2> [Unit=Ampere]</nr2>
Example	: AC "1.0,1,2.5,5.0,10.5,4.5,2.0,2.0"

AR

Type Description	: All Channels
Description	: Set the resistance level 1(L1) of CR mode to the eight channels in one frame. The frame will ignore the setting if the channel does not
	exist.
Syntax	: AR "n,n,n,n,n,n,n"
Parameters(n)	: <nr2> [Unit=OHM]</nr2>
Example	: AR "1.0,0.1,0.2,0.5,0.15,0.4,0.2,0.2"

AV

Type Description	 : All Channels : Set the voltage level 1(L1) of CV mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: AV "n,n,n,n,n,n,n,n"
Parameters(n)	: <nr2> [Unit=Volt]</nr2>
Example	: AV "5.0,5.5,3.3,5.1,12.0,-5.5,5.0,5.2"

CCR

Туре	: All Channels
Description	: Set the rising slew rate of CC mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
	exist.
Syntax	: CCR "n,n,n,n,n,n,n,"
Parameters(n)	: <nr2> [Unit=A/us]</nr2>
Example	: CCR "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"

CCF

Туре	: All Channels
Description	: Set the falling slew rate of CC mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: CCF "n,n,n,n,n,n,n,"
Parameters(n)	: <nr2> [Unit=A/us]</nr2>
Example	: CCF "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"

CRR

Туре	: All Channels
Description	: Set the rising slew rate of CR mode to the eight channels in one
	frame. The frame will ignore the setting if the channel does not
	exist.
Syntax	: CRR "n,n,n,n,n,n,n,"
Parameters(n)	: <nr2> [Unit=A/us]</nr2>
Example	: CRR "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"

CRF

Туре	: All Channels
Description	: Set the falling slew rate of CR mode to the eight channels in one
-	frame. The frame will ignore the setting when the channel does not
	exist.
Syntax	: CRF ''n,n,n,n,n,n,n"
Parameters(n)	: <nr2> [Unit=A/us]</nr2>
Example	: CRF "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"

LAT

Туре	: All Channels
Description	: Set the action type of Von to the eight channels in one frame. The
	frame will ignore the setting when the channel does not exist.
Syntax	: LAT "n,n,n,n,n,n,n"
Parameters(n)	: 0: OFF, 1: ON
Example	: LAT "0,1,1,1,0,1,0,1"

G0

Туре	: All Channels
Description	: This command starts/stops current sinking of the eight channels in
	one frame. The frame will ignore the setting if the channel does not
	exist.
Syntax	: GO "n,n,n,n,n,n,n"
Parameters(n)	: 0: OFF, 1: ON, Other Value: no action
Example	: GO "0,1,1,1,0,1,0,1"

VRB

Туре	: All Channels
Description	: This command sets the voltage range of CC mode to the eight

	Syntax Parameters(n) Example	 channels in one frame. The frame will ignore the setting if the channel does not exist. VRB "n,n,n,n,n,n,n" O: LOW range, 1: HIGH range, Other Value: no action VRB "0,1,1,1,0,1,0,1"
VR	Туре	: All Channels
	Description	: This command sets the voltage range of CC mode to the eight channels in one frame. The frame will ignore the setting when the channel does not exist. The unit of the setting value is volt. Please refer to measurement section in the Specification table.
	Syntax	: VR "n,n,n,n,n,n,n"
	Parameters(n)	: <nr2> [Unit=Volt]</nr2>
	Example	: VR "-1,-1,2,16,80,10,80,16"
VO.	N	
	Туре	: All Channels
	Description	: This command sets Von voltage to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
	Syntax Parameters(n)	: VON "n,n,n,n,n,n,n" : <nr2> [Unit=Volt]</nr2>
	Example	: VON "1.23, 1.23, 0, 0, 5, 5, 12, 12"
	1	
CC.		
	Type Description	All ChannelsSet both of the rising and the falling slew rate of CC mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
	Syntax	: CCSR "n,n,n,n,n,n,n,"
	Parameters(n)	: <nr2> [Unit=A/us]</nr2>
	Example	: CCSR "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"
CR.	SR	
	Туре	: All Channels
	Description	: Set both of the rising and the falling slew rate of CR mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
	Syntax	: CRSR "n,n,n,n,n,n,n,"
	Parameters(n)	: <nr2> [Unit=A/us]</nr2>
	Example	: CRSR "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"
CD	L1	
	Туре	: All Channels
	Description	: Set the current level 1(L1) of CCDL/CCDH mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
	Syntax	: CDL1 "n,n,n,n,n,n,n,n"
	Parameters(n)	: <nr2> [Unit=Ampere]</nr2>

Example	: CDL1 "1.0,1,2.5,5.0,10.5,4.5,2.0,2.0"
CDL2	
Туре	: All Channels
Description	: Set the current level 2(L2) of CCDL/CCDH mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: CDL2 "n,n,n,n,n,n,n"
Parameters(i)	
Example	: CDL2 "1.0,1,2.5,5.0,10.5,4.5,2.0,2.0"
CDT1	
Туре	: All Channels
Description	: Set the active time T1 of current level 1(L1) of CCDL/CCDH mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: CDT1 "n,n,n,n,n,n,n"
Parameters(n)	
Example	: CDT1 "1.0,1,2.5,5.0,10.5,4.5,2.0,2.0"
CDT2	
Туре	: All Channels
Description	: Set the active time T2 of current level 2(L2) of CCDL/CCDH mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: CDT2 "n,n,n,n,n,n,n"
Parameters(n)	
Example	: CDT2 "1.0,1,2.5,5.0,10.5,4.5,2.0,2.0"
CDR	
Туре	: All Channels
Description	: Set the rising slew rate of CCDL/CCDH mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: CDR "n,n,n,n,n,n,n"
Parameters(n)	
Example	: CDR "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"
CDF	
Type	: All Channels
Description	: Set the falling slew rate of CCDL/CCDH mode to the eight channels in one frame. The frame will ignore the setting if the channel does not exist.
Syntax	: CDF "n,n,n,n,n,n,n"
Parameters(n)	
Example	: CDF "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"
I	
L Туре	: All Channels

Description	: Set the load level according to mode setting for the eight channels in one frame. The frame will ignore the setting if the channel does not exist.		
	not exist.		
Syntax	: L "n,n,n,n,n,n,n"		
Parameters(n)	: <nr2> [Unit=Ampere(CCL/CCH)]</nr2>		
	[Unit=OHM(CRL/CRH)]		
	[Unit=Volt(CV)]		
Example	: L "1.0,2.5,2.5,10,2.0,5.0,5.0,5.0"		

SRA

Туре	: All Channels
Description	: This command resets the Von control signal to initial state for the
	eight channels in one frame. The frame will ignore the setting if the
	channel does not exist.
Syntax	: SRA "n,n,n,n,n,n,n,"
Parameters(n)	: 1: RESET, Other Value: no action
Example	: SRA "0,0,1,1,1,1,1,0"

4. Status Reporting

4.1 Introduction

This chapter explains the status data structure of Chroma 6330 Series electronic load as shown in Figure 4-1(on the next page). The standard registers, such as the Event Status register group, the Output Queue, the Status Byte and Service Request Enable registers, perform the standard GPIB functions and are defined in IEEE-488.2 Standard Digital Interface for Programmable Instrumentation. Other status register groups implement the specific status reporting requirements for the electronic load. The Channel Status and Channel Summary groups are used by multiple channel electronic load to enable the status information that will be kept at its own Status register for each channel.

4.2 Register Information in Common

Condition register

The condition register represents the present status of electronic load signals. Reading the condition register does not change the state of its bits. Only changes in electronic load conditions affect the contents of this register.

• PTR/NTR Filter, Event register

The Event register captures changes in conditions corresponding to condition bits in a condition register, or to a specific condition in the electronic load. An event becomes true when the associated condition makes one of the following electronic load-defined transitions:

Positive TRansition (0 - to - 1) Negative TRansition (1 - to - 0) Positive or Negative TRansition (0-to-1 or 1-to-0)

The PTR/NTR filters determine what type of condition transitions set the bits in the Event register. Channel Status, Questionable Status allow transitions to be programmed. Other register groups, i.e. Channel Summary, Standard Event Status register group use an implied Rise (0-to-1) condition transition to set bits in the Event register. Reading an Event register clears it (all bits set to zero).

• Enable register

The Enable register can be programmed to enable the bit that the corresponding Event register is logically ORed into the Channel Summary.

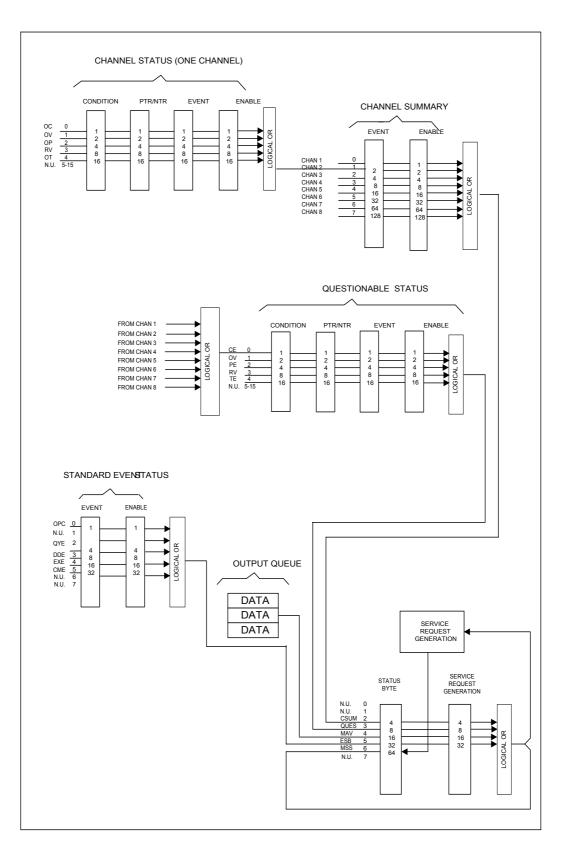


Figure 4-1 The Status Registers of Electronic Load

Mnemonic	Bit	Value	Meaning		
OC	0	1	Over current. When an over current condition has occurred on a		
			channel, Bit 0 is set and remains set until the over current		
			condition is removed and LOAD:PROT:CLE is programmed.		
OV	1	2	Over voltage. When an over voltage condition has occurred on a		
			channel, Bit 1 is set and remains set until the over voltage		
			condition is removed and LOAD:PROT:CLE is programmed.		
OP	2	4	Overpower. An overpower condition has occurred on a channel,		
			Bit 2 is set and remains set until the overpower condition is		
			removed and LOAD:PROT:CLE is programmed.		
RV	3	8	Reverse voltage on input. When a channel has a reverse voltage		
applied to it, Bit 3 is set. It remains set until the r		applied to it, Bit 3 is set. It remains set until the reverse voltage			
			is removed and LOAD:PROT:CLE is programmed.		
ОТ	4	16	Over temperature. When over temperature condition has		
			occurred on a channel, Bit 4 is set and the channel is turned off.		
			It remains set until the channel has cooled down below the over		
			temperature trip point and LOAD:PROT:CLE is programmed.		

 Table 4-1
 Bit Description of Channel Status

4.3 Channel Status

- The Channel Status register informs you one or more channel status conditions, which indicate certain errors or faults have occurred to a specific channel. Table 4-1 explains the channel status conditions that are applied to the electronic load.
- When the bits of the Channel Status Condition register are set, the corresponding condition is true.
- Program the PTR/NTR filter to select the way of condition transition in the Channel Status Condition register that will be set in the Event registers.
- Reading the Channel Status Event register resets itself to zero.
- The Channel Status Enable register can be programmed to specify the channel status event bit that is logically ORed to become the corresponding channel bit in Channel Summary Event register.

4.4 Channel Summary

- The Channel Summary registers summarize the channel status conditions up to 8 channels.
- When an enabled bit in the Channel Status Event register is set, it causes the corresponding channel bit in the Channel Summary Event register to be set.
- Reading the Event register will reset it to zero.
- The Channel Summary Enable register can be programmed to specify the channel summary event bit from the existing channels that is logically ORed to become Bit 2 (CSUM bit) in the Status Byte register.

4.5 Questionable Status

- The Questionable Status registers inform you one or more questionable status conditions, which indicate certain errors or faults have occurred to at least one channel. Table 4-2 lists the questionable status conditions that are applied to the electronic load. These conditions are same as the channel status conditions. Refer to Table 4-1 for a complete description.
- When a corresponding bit of Questionable Status Condition register is set, it indicates the condition is true.
- Program the PTR/NTR filter to select the way of condition transition in the Channel Status Condition register that will be set in the Event registers.
- Reading the Questionable Status Event register will reset it to zero.
- The Questionable status Enable register can be programmed to specify the questionable status event bit that is logically ORed to become Bit 3 (QUES bit) in the Status Byte register.

Mnemonic	Bit	Value	Meaning	
CE/OC	0	1	Current Error (Over current).	
OV	1	2	Over voltage. Power Error (Over power).	
PE/OP	2	4		
RV	3	8	Reverse voltage on input.	
TE/OT	4	16	Temperature Error (Over temperature).	

Table 4-2 Bit Description of Questionable Status

4.6 Output Queue

- The Output Queue stores output messages until they are read from the electronic load.
- The Output Queue stores messages sequentially on a FIFO (First-In, First-Out) basis.
- It sets to 4 (MAV bit) in the Status Byte register when there are data in the queue.

4.7 Standard Event Status

- All programming errors that have occurred will set one or more error bits in the Standard Event Status register. Table 4-3 describes the standard events that apply to the electronic load.
- Reading the Standard Event Status register will reset it to zero.
- The Standard Event Enable register can be programmed to specify the standard event bit that is logically ORed to become Bit 5 (ESB bit) in the Status Byte register.

Mnemonic	Bit	Value	Meaning	
OPC	0	1	<i>Operation Complete.</i> This event bit generated is responding to the *OPC command. It indicates that the device has completed all of the selected pending operations.	
QYE	2	4	<i>Query Error</i> . The output queue was read when no data were present or the data in the queue were lost.	
DDE	3	8	Device Dependent Error. Memory was lost, or self-test failed.	
EXE	4	16	<i>Execution Error</i> . A command parameter was out of the legal range or inconsistent with the electronic load's operation, or the command could not be executed due to some operating conditions.	
CME	5	32	<i>Command Error</i> . A syntax or semantic error has occurred, or the electronic load has received a <get> message from program.</get>	

 Table 4-3
 Bit Description of Standard Event Status

4.8 Status Byte Register

- The Status Byte register summarizes all of the status events for all status registers. Table 4-4 describes the status events that are applied to the electronic load.
- The Status Byte register can be read with a serial of pull or *STB? query.
- The RQS bit is the only bit that is automatically cleared after a serial of pull.
- When the Status Byte register is read with a *STB? query, Bit 6 of the Status Byte register will contain the MSS bit. The MSS bit indicates that the load has at least one reason for requesting service. *STB? does not affect the status byte.
- The Status Byte register is cleared by *CLS command.

Mnemonic	Bit	Value		
CSUM	2	4	Channel Summary. It indicates if an enabled channel event	
			has occurred. It is affected by Channel Condition, Channel	
			Event and Channel Summary Event registers.	
QUES	3	8	Questionable. It indicates if an enabled questionable event	
			has occurred.	
MAV	4	16	Message Available. It indicates if the Output Queue contains	
			data.	
ESB	5	32	Event Status Bit. It indicates if an enabled standard event has	
			occurred.	
RQS/MSS	6	64	Request Service/Master Summary Status. During a serial of	
			pull, RQS is returned and cleared. For a *STB? query, MSS	
			is returned without being cleared.	

Status Byte Bit Description

Table 4-4Bit Description of Status Byte

4.9 Service Request Enable Register

The Service Request Enable register can be programmed to specify the bit in the Status Byte register that will generate the service requests.

5. An Example of Use

In this chapter a basic example of controlling electronic load is provided for use of GPIB. The GPIB used here is made by NI (National Instruments).

Examples:

```
#include "dec1.h"
  #include <stdio.h>
  #include <stdlib.h>
  #include <sring.h>
  #include <iostream.h>
  #include <time.h>
  static int MTA,
           MLA:
  static int bd;
  const char LA = 0x20,
             TA = 0x40;
  static void setNi( int pad, char *cardName )
  {
     MTA = TA + pad;
     MLA = LA + pad;
     if (bd = ibfind (cardName)) < 0 }
        puts ( "GPIB Card Found Error" );
        exit (1);
     }
     if (ibpad (bd, pad) & ERR) {
         puts ("GPIB Card Address Assignment Error");
         exit (3);
      }
     ibtmo ( bd, 10 );
  ibsic (bd);
  ibsre ( bd, 1 );
}
static void Niwrite( int pad, char *cmdStr )
ł
  char cmd[4];
  cmd[0] = UNL;
  cmd[1] = UNT;
```

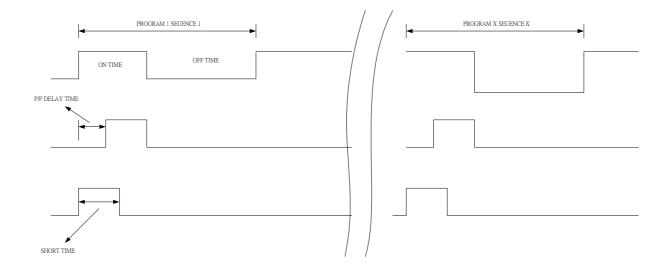
```
cmd[2] = MTA;
  cmd[3] = LA + pad;
  //
  ibcmd( bd, cmd, 4 );
  ibwrt ( bd, cmdStr, fstrlen( cmdStr ) );
  ibcmd(bd, cmd, 2);
}
static char rxBuf [64]
static void Niread( int pad, char *queryStr )
ł
   char cmd[4];
   Niwrite( pad, queryStr );
   cmd[ 0 ] = UNL;
   cmd[ 1 ] = UNT;
   \operatorname{cmd}[2] = \operatorname{TA} + \operatorname{pad};
   cmd[3] = MLA;
   //
   ibcmd(bd, cmd, 4);
   ibrd( bd, rxBuf, sizeof( rxBuf ) - 1 );
   rxBuf[ ibcnt ] = ' 0 ';
   ibcmd(bd, cmd, 2);
}
void main( )
  setNi( 0, "GPIB" );
                                      // Set the status of PC's GPIB CARD.
  //
  Niread( 8, "*IDN?");
                                      // Read back identity code of 6314.
  cout \ll rxBuf \ll " \n\r";
                                      // Display on the screen of PC.
  //
  Niwrite( 8, "CHAN 1" );
                                      // Set CHANNEL as 1.
  //
  Niread( 8, "CHAN:ID?");
                                      // Read back identity code of channel 1.
  cout << rxBuf << " \n\r ";
                                      // Display on the screen of PC.
  //
  Niwrite( 8, "MODE CCL" );
                                       // Set CHANNEL 1 MODE as CCL.
  Niwrite (8, "CURR:STATIC:L1 1"):
                                             // Set L1 current of CCL as 1A.
  //
  Niread( 8, "LOAD ON" );
                                              // Start sinking current.
  Niread( 8, "MEAS:VOLT?");
                                              // Measure the readings of voltage.
  \operatorname{cout} \ll \operatorname{rxBuf} \ll \operatorname{`` \n\r";}
                                              // Display on the screen of PC.
  //
  Niread( 8, "MEAS:CURR?");
                                              // Measure the readings of current.
```

cout << rxBuf << " \n\r "; Niread(8, "LOAD OFF"); // ibsic (bd); ibon1(bd, 0); ibsre (bd, 0); // Display on the screen of PC.
// Stop sinking current.

For the above example please refer to Chapter 3, and add corresponding commands according to the setting and control.

Example of PROGRAM RUN

}


. .

•

•

You can use the following control procedures to run the PROGRAM.

<1> PROGram:FILE 1	// Set the	e PROGRAM FILE to be run
<2> PROGram: ACTive 15	// Set the	e mapping action for Module Channel
	// chan 1	- chan 8 mapping value weights are
	// 1, 2, 4	, 8, 16, 32, 64,128
<3> PROGram: CHAIN 0	// progra	ım chain file No.
<4> PROGram:ONTime 3	// on tim	e setting
<5> PROGram:OFFTime 2	// off tin	ne setting
<6> PROGram:SEQuence 1	// Seque	nce No. setting
<7> PROGram:SEQuence:MODE AU	TO	<pre>// Sequence mode setting</pre>
<8> PROGram:SEQuence:SHORt:CH	ANnel 1	// Sequence short channel setting
<9> PROGram:SEQuence:SHORt:TIM	ME 1	<pre>// Sequence short setting</pre>
<10> PROGram:SEQuence 2		// sequence 2, sequence 3, setting
<11> PROGram:SAVE		// Save program setting data
<12> PROGram:RUN		// Run PROGRAM
<13> PROGram:RUN?		// Check if PROGRAM is running

